Subscribe free to our newsletters via your
. Solar Energy News .




SOLAR DAILY
Building the electron superhighway
by Staff Writers
Burlington, VT (SPX) Sep 15, 2015


University of Vermont scientists have invented a new way to create what they are calling an electron superhighway in an organic semiconductor that promises to allow electrons to flow faster and farther -- aiding the hunt for flexible electronics, organic solar cells, and other low-cost alternatives to silicon. To explore these organic materials, UVM graduate students (from left) Naveen Rawat and Lane Manning, and professors Randy Headrick and Madalina Furis, deployed this table-top scanning laser microscope. Their latest finding is reported in the journal Nature Communications -- and may, someday not too far off, let you roll up your computer like a piece of paper. Image courtesy Joshua Brown, UVM. For a larger version of this image please go here.

TV screens that roll up. Roofing tiles that double as solar panels. Sun-powered cell phone chargers woven into the fabric of backpacks. A new generation of organic semiconductors may allow these kinds of flexible electronics to be manufactured at low cost, says University of Vermont physicist and materials scientist Madalina Furis.

But the basic science of how to get electrons to move quickly and easily in these organic materials remains murky. To help, Furis and a team of UVM materials scientists have invented a new way to create what they are calling "an electron superhighway" in one of these materials - a low-cost blue dye called phthalocyanine - that promises to allow electrons to flow faster and farther in organic semiconductors.

Their discovery, reported Sept. 14 in the journal Nature Communications, will aid in the hunt for alternatives to traditional silicon-based electronics.

Hills And Potholes
Many of these types of flexible electronic devices will rely on thin films of organic materials that catch sunlight and convert the light into electric current using excited states in the material called "excitons." Roughly speaking, an exciton is a displaced electron bound together with the hole it left behind. Increasing the distance these excitons can diffuse - before they reach a juncture where they're broken apart to produce electrical current - is essential to improving the efficiency of organic semiconductors.

Using a new imaging technique, the UVM team was able to observe nanoscale defects and boundaries in the crystal grains in the thin films of phthalocyanine - roadblocks in the electron highway. "We have discovered that we have hills that electrons have to go over and potholes that they need to avoid," Furis explains.

To find these defects, the UVM team - with support from the National Science Foundation - built a scanning laser microscope, "as big as a table" Furis says. The instrument combines a specialized form of linearly polarized light and photoluminescence to optically probe the molecular structure of the phthalocyanine crystals.

"Marrying these two techniques together is new; it's never been reported anywhere," says Lane Manning '08 a doctoral student in Furis' lab and co-author on the new study.

The new technique allows the scientists a deeper understanding of how the arrangement of molecules and the boundaries in the crystals influence the movement of excitons. It's these boundaries that form a "barrier for exciton diffusion," the team writes.

And then, with this enhanced view, "this energy barrier can be entirely eliminated," the team writes. The trick: very carefully controlling how the thin films are deposited. Using a novel "pen-writing" technique with a hollow capillary, the team worked in the lab of UVM physics and materials science professor Randy Headrick to successfully form films with jumbo-sized crystal grains and "small angle boundaries." Think of these as easy-on ramps onto a highway - instead of an awkward stop sign at the top of a hill - that allow excitons to move far and fast.

Better Solar Cells
Though the Nature Communications study focused on just one organic material, phthalocyanine, the new research provides a powerful way to explore many other types of organic materials, too - with particular promise for improved solar cells. A recent U.S. Department of Energy report identified one of the fundamental bottlenecks to improved solar power technologies as "determining the mechanisms by which the absorbed energy (exciton) migrates through the system prior to splitting into charges that are converted to electricity."

The new UVM study - led by two of Furis' students, Zhenwen Pan G'12, and Naveen Rawat G'15 - opens a window to view how increasing "long-range order" in the organic semiconductor films is a key mechanism that allows excitons to migrate farther. "The molecules are stacked like dishes in a dish rack," Furis explains, "these stacked molecules - this dish rack - is the electron superhighway."

Though excitons are neutrally charged - and can't be pushed by voltage like the electrons flowing in a light bulb - they can, in a sense, bounce from one of these tightly stacked molecules to the next. This allows organic thin films to carry energy along this molecular highway with relative ease, though no net electrical charge is transported.

"One of today's big challenges is how to make better photovoltaics and solar technologies," says Furis, who directs UVM's program in materials science, "and to do that we need a deeper understanding of exciton diffusion. That's what this research is about."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
University of Vermont
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





SOLAR DAILY
Artificial 'plants' could fuel the future
Berkeley CA (SPX) Sep 09, 2015
Imagine creating artificial plants that make gasoline and natural gas using only sunlight. And imagine using those fuels to heat our homes or run our cars without adding any greenhouse gases to the atmosphere. By combining nanoscience and biology, researchers led by scientists at University of California, Berkeley, have taken a big step in that direction. Peidong Yang, a professor of chemi ... read more


SOLAR DAILY
Potential of disk-shaped small structures, coccoliths

Water heals a bioplastic

Waste coffee used as fuel storage

Methanotrophs: Could bacteria help protect our environment?

SOLAR DAILY
'Hedgehog' Robots Hop, Tumble in Microgravity

For these 'cyborgs', keys are so yesterday

Australian scientists sending robot after destructive starfish

A house that runs itself? Samsung believes it's about time

SOLAR DAILY
As wind-turbine farms expand, research shows they lose efficiency

Researchers find way for eagles and wind turbines to coexist

North Dakota plans more wind power capacity

European Funding brings ZephIR 300 wind lidar to Malta

SOLAR DAILY
Uber's Chinese rival invests in US opponent Lyft: report

China auto sales down 2.98% in August: industry group

Major carmakers pledge auto-braking for US market

Uber raises $1.2 bn for Chinese branch: source

SOLAR DAILY
Hyperloop: Transport into the Future

SeaRoc and Natural Power helping EDF's Paimpol-Brehat Tidal Farm

New nanomaterial maintains conductivity in three dimensions

New findings move flexible lighting technology toward commercial feasibility

SOLAR DAILY
Kenya signs China nuclear power deal

Anger as French minister casts doubt on nuclear plant closure

Japan nuclear plant begins commercial operations

Russia Mulls Participation in Armenian NPP New Power Unit Construction

SOLAR DAILY
British study finds new potential for carbon storage

How to curb emissions? Put a price on carbon

Hong Kong's Li overhauls business by merging utilities firms

Pakistan power sector target of ADB funding

SOLAR DAILY
Russia Home to Largest Number of Trees Globally

Rate of global forest loss halved: UN report

Native tribe fights to save Boreal forest in Quebec

Columbia engineers develop new approach to modeling Amazon seasonal cycles




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.