Subscribe free to our newsletters via your
  Solar Energy News  




Subscribe free to our newsletters via your




















SOLAR DAILY
CWRU directly measures how perovskite solar films efficiently convert light to power
by Staff Writers
Cleveland OH (SPX) Jan 13, 2017


File image.

Solar cells made with films mimicking the structure of the mineral perovskite are the focus of worldwide research. But only now have researchers at Case Western Reserve University directly shown the films bear a key property allowing them to efficiently convert sunlight into electricity.

Identifying that attribute could lead to more efficient solar panels.

Electrons generated when light strikes the film are unrestricted by grain boundaries - the edges of crystalline subunits within the film - and travel long distances without deteriorating, the researchers showed. That means electric charge carriers that become trapped and decay in other materials are instead available to be drawn off as current.

The scientists directly measured the distance traveled--called diffusion length - for the first time by using the technique called "spatially scanned photocurrent imaging microscopy." Diffusion length within a well-oriented perovskite film measured up to 20 micrometers.

The findings, published in the journal Nano Letters, indicate that solar cells could be made thicker without harming their efficiency, said Xuan Gao, associate professor of physics and author of the paper.

"A thicker cell can absorb more light," he said, "potentially yielding a better solar cell."

Efficiency built in
Solar power researchers believe perovskite films hold great promise. In less than five years, films made with the crystalline structure have surpassed 20 percent efficiency in converting sunlight to electricity, a mark that took decades to reach with silicon-based solar cells used today.

In this research, Gao's lab performed spatially scanned photocurrent image measurements on films made in the lab of Case Western Reserve chemistry professor Clemens Burda.

Perovskite minerals found in nature are oxides of certain metals, but Burda's lab made organo-metallic films with the same crystalline structure using methyl ammonium lead tri-iodide (CH3NH3PBI3), a three-dimensional lead halide surrounded by small organic methyl ammonium molecules that hold the lattice structure together.

"The question has been, 'How are these solar cells so efficient? If we would know, we could further improve perovskite solar cells" Burda said. "People thought it could be due to unusually long electron transport, and we directly measured it."

Diffusion length is the distance an electron or its opposite, called a hole, travels from generation until it recombines or is extracted as electric current. The distance is the same as transport length when no electric field (which usually increases the distance traveled) is applied.

Measuring travel
The labs made repeated measurements by focusing a tiny laser spot on films 8 millimeters square by 300 nanometers thick. The films were made stable by coating the perovskite with a layer of the polymer parylene.

The light generates electrons and holes and the photocurrent, or stream of electrons, is recorded between the electrodes positioned about 120 microns away from each other while the film is scanned along two perpendicular directions. The scanning yields a two-dimensional spatial map of carrier diffusion and transport characteristics.

The measurements showed diffusion length averaged about 10 microns. In some cases, the length reached 20 microns, showing the functional area of the film is at least 20 microns long, the researchers said.

In some materials, grain boundaries decrease conductivity, but imaging showed that these interfaces between grains in the film exerted no influence on electron travel. Gao and Burda say this may be because grains in the film are well aligned, causing no impedance or other detrimental effects on electrons or holes.

Burda and Gao are now seeking federal funds to use the microscopy technique to determine whether different grain sizes, orientations, halide perovskite compositions, film thicknesses and more change the film's properties, to further accelerate research in the field.

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Case Western Reserve University
All About Solar Energy at SolarDaily.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SOLAR DAILY
An ordered route to improved performance of solar cells
Thuwal, Saudi Arabia (SPX) Jan 11, 2017
Silicon is the dominant material in the production of solar cells. However, perovskites are catching up: they are cheap, flexible and have a promising light-to-electricity conversion efficiency. KAUST researchers are investigating the formation of these perovskites to better understand their properties and gain insight into the design of more efficient devices1. Metal halide perovskites ha ... read more


SOLAR DAILY
Dual-purpose biofuel crops could extend production, increase profits

Open-source plant database confirms top US bioenergy crop

Species diversity reduces chances of crop failure in algal biofuel systems

Potential biofuel crops in Hawaii may successfully sequester carbon in soil

SOLAR DAILY
Amazon Alexa virtual assistant shines at tech show

Robots show their 'personality' at big tech show

Bionic woman: Chinese robot turns on the charm

How to control the unknown: Novel method for robotic manipulation

SOLAR DAILY
New York sets bar high for offshore wind

The answer is blowing in the wind

French power group aims to double wind capacity

New rules for micro-grids in Alberta

SOLAR DAILY
China 2016 auto sales surge at fastest in three years

New technology will cut plug-in hybrid fuel consumption by one third

US deal won't end 'dieselgate' pain for Volkswagen

VW directors knew of emissions scandal earlier: press

SOLAR DAILY
UK-Led Hydrogen Fuel Project Promises to Provide Ultra-Clean Air in China

Scientists discover a molecular motor has a 'gear' for directional switching

Rolling out an e-sticker revolution

Tenfold jump in green tech needed to meet global emissions targets

SOLAR DAILY
France sells off Engie stake to finance Areva rescue

UK asks regulators to assess Chinese nuclear reactor

EU clears French rescue of troubled nuclear firm Areva

Controversial nuclear power plant near New York to close

SOLAR DAILY
China to build $1.5 billion power line across Pakistan

MIT Energy Initiative report provides guidance for evolving electric power sector

Toward energy solutions for northern regions

Energy-hungry Asia slowing down, lender says

SOLAR DAILY
Measuring trees with the speed of sound

In cool forests, foraging bees prefer the warmth of darker flower petals

Scientists try turning Christmas trees into plastic

Obama creates two new national monuments




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement