Subscribe to our free daily newsletters
  Solar Energy News  




Subscribe to our free daily newsletters



SOLAR DAILY
Insect eyes inspire new solar cell design from Stanford
by Staff Writers
Stanford CA (SPX) Sep 04, 2017


A compound solar cell illuminated from a light source below. Hexagonal scaffolds are visible in the regions coated by a silver electrode. The new solar cell design could help scientists overcome a major roadblock to the development of perovskite photovoltaics. Credit Dauskardt Lab/Stanford University

Packing tiny solar cells together, like micro-lenses in the compound eye of an insect, could pave the way to a new generation of advanced photovoltaics, say Stanford University scientists.

In a new study, the Stanford team used the insect-inspired design to protect a fragile photovoltaic material called perovskite from deteriorating when exposed to heat, moisture or mechanical stress. The results are published in the journal Energy and Environmental Science (E and ES).

"Perovskites are promising, low-cost materials that convert sunlight to electricity as efficiently as conventional solar cells made of silicon," said Reinhold Dauskardt, a professor of materials science and engineering and senior author of the study. "The problem is that perovskites are extremely unstable and mechanically fragile. They would barely survive the manufacturing process, let alone be durable long-term in the environment."

Most solar devices, like rooftop panels, use a flat, or planar, design. But that approach doesn't work well with perovskite solar cells.

"Perovskites are the most fragile materials ever tested in the history of our lab," said graduate student Nicholas Rolston, a co-lead author of the E and ES study. "This fragility is related to the brittle, salt-like crystal structure of perovskite, which has mechanical properties similar to table salt."

Eye of the fly
To address the durability challenge, the Stanford team turned to nature.

"We were inspired by the compound eye of the fly, which consists of hundreds of tiny segmented eyes," Dauskardt explained. "It has a beautiful honeycomb shape with built-in redundancy: If you lose one segment, hundreds of others will operate. Each segment is very fragile, but it's shielded by a scaffold wall around it."

Using the compound eye as a model, the researchers created a compound solar cell consisting of a vast honeycomb of perovskite microcells, each encapsulated in a hexagon-shaped scaffold just 0.02 inches (500 microns) wide.

"The scaffold is made of an inexpensive epoxy resin widely used in the microelectronics industry," Rolston said. "It's resilient to mechanical stresses and thus far more resistant to fracture."

Tests conducted during the study revealed that the scaffolding had little effect on the perovskite's ability to convert light into electricity.

"We got nearly the same power-conversion efficiencies out of each little perovskite cell that we would get from a planar solar cell," Dauskardt said. "So we achieved a huge increase in fracture resistance with no penalty for efficiency."

Durability
But could the new device withstand the kind of heat and humidity that conventional rooftop solar panels endure?

To find out, the researchers exposed encapsulated perovskite cells to temperatures of 185 degrees Fahrenheit (85 degrees Celsius) and 85 percent relative humidity for six weeks. Despite these extreme conditions, the cells continued to generate electricity at relatively high rates of efficiency.

Dauskardt and his colleagues have filed a provisional patent for the new technology. To improve efficiency, they are studying new ways to scatter light from the scaffold into the perovskite core of each cell.

"We are very excited about these results," he said. "It's a new way of thinking about designing solar cells. These scaffold cells also look really cool, so there are some interesting aesthetic possibilities for real-world applications."

Research paper

SOLAR DAILY
NREL, Swiss scientists power past solar efficiency records
Golden CO (SPX) Aug 30, 2017
Collaboration between researchers at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), the Swiss Center for Electronics and Microtechnology (CSEM), and the Ecole Polytechnique Federale de Lausanne (EPFL) shows the high potential of silicon-based multijunction solar cells. The research groups created tandem solar cells with record efficiencies of converting sunlig ... read more

Related Links
Stanford University
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Could switchgrass help China's air quality?

Reusable ruthenium-based catalyst could be a game-changer for the biomass industry

Center for Biorenewable Chemicals introduces idea for new molecules,

Technique could aid mass production of biodegradable plastic

SOLAR DAILY
Voice assistants promise a light-fingered future

New robot rolls with the rules of pedestrian conduct

Roboteam receives orders for tactical robots

Illinois researchers develop origami-inspired robot

SOLAR DAILY
Light-Based Method Improves Practicality and Quality of Remote Wind Measurements

Texas makes wind energy strides

Saudi Arabia shortlists 25 bidders for major wind plant

First foundations set for Baltic Sea wind farm

SOLAR DAILY
US House passes bill to clear path for self-driving cars

Post-Harvey Houston faces a car crunch

Battling to thwart diesel bans, Merkel throws in the cash

VW shares gain as dieselgate bullet dodged

SOLAR DAILY
Researchers devise a new way of producing hydrogen fuel

Electricity production: When enzymes rival platinum

Making better batteries via real-time TEM observation

NREL analysis identifies where commercial customers might benefit from energy storage

SOLAR DAILY
Jacobs JV wins support contract for nuclear research center

PM opens country's fifth nuclear power plant

China and Brazil sign agreements on nuclear power

Kazakhstan inaugurates IAEA-backed nuclear fuel bank

SOLAR DAILY
Scientists propose method to improve microgrid stability and reliability

ADB: New finance model needed for low-carbon shift in Asia

China merges energy giants into global leader

Power demand to peak in Europe summers, not winters: study

SOLAR DAILY
Greenpeace steps up protest against Polish forest logging

Ancient trees reveal relationship between climate change, wildfires

Brazil's opening of Amazon to mining sets off alarm

Annual value of trees estimated at 500 million dollars per megacity




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement