Subscribe to our free daily newsletters
  Solar Energy News  




Subscribe to our free daily newsletters



SOLAR DAILY
New discoveries about photosynthesis may lead to solar cells of the future
by Staff Writers
Lund, Sweden (SPX) Jul 19, 2016


illustration only

For the first time, researchers have successfully measured in detail the flow of solar energy, in and between different parts of a photosynthetic organism. The result is a first step in research that could ultimately contribute to the development of technologies that use solar energy far more efficiently than what is currently possible.

For about 80 years, researchers have known that photochemical reactions inside an organism do not occur in the same place as where it absorbs sunlight. What has not been known, however, is how and along what routes the solar energy is transported into the photosynthetic organism - until now.

"Not even the best solar cells that we as humans are capable of producing can be compared to what nature performs in the first stages of energy conversion. That is why new knowledge about photosynthesis will become useful for the development of future solar technologies", says Donatas Zigmantas, Faculty of Science at Lund University, Sweden.

Together with his colleagues Jakub Dostal, Lund University, and Jakub Psencik, Charles University in Prague, Donatas Zigmantas has studied the photosynthesis of bacterial cells. Using ultrafast spectroscopy - a measurement method that uses light to study molecules etc. - they were able to locate the routes along which solar energy is transported. The routes run both within and between the components of a photosynthetic cell. According to the researchers, their discovery demonstrates how the biological machinery is connected.

The research results show that the transport of solar energy is much more efficient within, than between, different cell components. It limits the transfer of energy between the components and thereby also the efficiency of the entire photosynthetic energy conversion process.

"We have identified the transport routes as well as the bottlenecks that cause congestion in the photosynthetic energy conversion. In the future, this knowledge can be used within solar cell technology", says Donatas Zigmantas.

So far this is basic research - more studies of how energy is transported in both natural and artificial systems are needed before the results can be turned into practice.

"However, in the longer term, our results might well provide the basis for the development and manufacturing of systems on a molecular level that collect, store and transport sunlight to the solar cells", says Donatas Zigmantas.

The Lund researchers' discoveries were recently published in an article in the scientific journal Nature Chemistry.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Lund University
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SOLAR DAILY
The future of perovskite solar cells has just got brighter - come rain or shine
Pohang, South Korea (SPX) Jul 19, 2016
Widely known as one of the cleanest and most renewable energy sources, solar energy is a fast growing alternative to fossil fuels. Among the various types of solar materials, organometal halide perovskite in particular has attracted researchers' attention thanks to its superior optical and electronic properties. With a dramatic increase in the power conversion efficiency (PCE) from 3% in 2 ... read more


SOLAR DAILY
Can palm oil be sustainable

Scientists unlock 'green' energy from garden grass

Olive oil waste yields molecules useful in chemical and food industries

One reaction, two results, zero waste

SOLAR DAILY
Hey robot, shimmy like a centipede

New remote-controlled microrobots for medical operations

Minimalist swimming microrobots

Artificial muscle for soft robotics: Low voltage, high hopes

SOLAR DAILY
Offshore wind the next big thing, industry group says

France's EDF buys Chinese wind energy firm

Scotland commits $26M for low-carbon economy

More wind power added to French grid

SOLAR DAILY
Tesla plans new truck, bus and car-sharing system

S.Korea's Samsung invests $450 mn in China carmaker

Volvo Cars confident of setting sales record

Partially automated cars provide enough benefits to warrant widespread adoption

SOLAR DAILY
Newly discovered material property may lead to high temp superconductivity

WSU researchers determine key improvement for fuel cells

Organic molecules could store energy in flow batteries

Electricity generated with water, salt and an ultra thin membrane

SOLAR DAILY
Indian Scientists Go Nuclear to Provide Pure Water to Thirsty Sub-Continent

India Continues to Push China to Support Its Nuclear Supply Group Bid

One of a Kind Nuclear Power Unit to be Connected to Electrical Grid

Russia's TVEL Makes First Batch of Fuel for New Nuclear-Powered Icebreakers

SOLAR DAILY
Sweden's 100 percent carbon-free emissions challenge

Norway MPs vote to go carbon neutral by 2030

Algorithm could help detect and reduce power grid faults

It pays to increase energy consumption

SOLAR DAILY
Woody climbing vines are suffocating tropical forests

North American forests unlikely to save us from climate change

DRCongo to scrap illegal China logging contracts

Australian mangrove die-off blamed on climate change




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement