Subscribe to our free daily newsletters
  Solar Energy News  




Subscribe to our free daily newsletters



SOLAR DAILY
New research could revolutionize flexible electronics, solar cells
by Staff Writers
Binghamton NY (SPX) Oct 15, 2015


The study provides new insight into the spatial resolution limits and mechanisms for a relatively new process for patterning conductive regions in insulating graphene oxide. The minimum conductive feature size of four nanometers is the smallest achieved so far by any method for this material. Mativetsky said this approach is promising for lab-scale prototyping of nanoscale conductive patterns in graphene oxide.

Binghamton University researchers have demonstrated an eco-friendly process that enables unprecedented spatial control over the electrical properties of graphene oxide. This two-dimensional nanomaterial has the potential to revolutionize flexible electronics, solar cells and biomedical instruments.

By using the probe of an atomic force microscope to trigger a local chemical reaction, Jeffrey Mativetsky, assistant professor of physics at Binghamton University, and PhD student Austin Faucett showed that electrically conductive features as small as four nanometers can be patterned into individual graphene oxide sheets. One nanometer is about one hundred thousand times smaller than the width of a human hair.

"Our approach makes it possible to draw nanoscale electrically-conductive features in atomically-thin insulating sheets with the highest spatial control reported so far," said Mativetsky.

"Unlike standard methods for manipulating the properties of graphene oxide, our process can be implemented under ambient conditions and is environmentally-benign, making it a promising step towards the practical integration of graphene oxide into future technologies."

The 2010 Nobel Prize in Physics was awarded for the discovery of graphene, an atomically-thin, two-dimensional carbon lattice with extraordinary electrical, thermal and mechanical properties. Graphene oxide is a closely-related two-dimensional material with certain advantages over graphene, including simple production and processing, and highly tunable properties.

For example, by removing some of the oxygen from graphene oxide, the electrically insulating material can be rendered conductive, opening up prospects for use in flexible electronics, sensors, solar cells and biomedical devices.

The study provides new insight into the spatial resolution limits and mechanisms for a relatively new process for patterning conductive regions in insulating graphene oxide. The minimum conductive feature size of four nanometers is the smallest achieved so far by any method for this material. Mativetsky said this approach is promising for lab-scale prototyping of nanoscale conductive patterns in graphene oxide.

"There is significant interest in defining regions with different functionalities, and writing circuitry into two-dimensional materials. Our approach provides a way to directly pattern electrically-conductive and insulating regions into graphene oxide with high spatial resolution," said Mativetsky.

This research not only enables fundamental study of the nanoscale physical properties of graphene oxide but also opens up new avenues for incorporating graphene oxide into future technologies. Because the process developed by Mativetsky avoids the use of harmful chemicals, high temperatures or inert gas atmospheres, his work represents a promising step towards environmentally-friendly manufacturing with graphene oxide.

"At first, this will mainly be useful for studying fundamental properties and lab-scale devices," said Mativetsky.

"Eventually, this work may help lead to the practical integration of graphene oxide into low-cost and flexible electronics, solar cells, and sensors."

The study, "Nanoscale Reduction of Graphene Oxide under Ambient Conditions," first appeared in the online version of the international journal Carbon on Sept. 8, and will be published in print in the December issue. Mativetsky was recently awarded a three-year grant from the National Science Foundation to further study his approach to tailoring the structure and properties of graphene oxide.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Binghamton University
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SOLAR DAILY
Silver: The promising electrode winner for low-cost perovskite solar cells
Tancha, Japan (SPX) Oct 15, 2015
Perovskite solar cells are the rising star in photovoltaics. They absorb light across almost all visible wavelengths, they have exceptional power conversion efficiencies exceeding 20% in the lab, and they are relatively easy to fabricate. So, why are perovskite solar cells yet to be found on the top of our roofs? One problem is their overall cost, and another is that cheaper perovskite solar cel ... read more


SOLAR DAILY
Light emitting diodes made from food and beverage waste

Study: Africa's urban waste could produce rural electricity

Researchers create inside-out plants to watch how cellulose forms

Microalgae biomass as feedstock for biofuel, food, feed and more

SOLAR DAILY
Robots are learning to fall with grace

More-flexible machine learning

Psychic robot will know what you really meant to do

Bio-inspired robotic finger looks, feels and works like the real thing

SOLAR DAILY
Adwen and IWES sign agreement for the testing of 8MW turbine

US has fallen behind in offshore wind power

Moventas rolls out breakthrough up-tower planetary repairs for GE fleet

Chinese firm invests in Mexican wind power projects

SOLAR DAILY
Tesla cars can now almost drive themselves

Uber slip exposes data of some US drivers

VW to recall 8.5 mn vehicles in Europe as Italian police raid offices

'Dozens of managers' involved in VW's pollution cheating: report

SOLAR DAILY
Single atom alloy platinum-copper catalysts cut costs, boost green tech

Geothermal energy: Look to the Denver-Julesberg Basin

Knit it, braid it, turn it on and use it!

New Oregon approach for 'nanohoops' could energize future devices

SOLAR DAILY
Nuclear waste ship leaves France for Australia

Sweden to close two more nuclear reactors

Russia, China Plan to Develop Nuclear Markets Globally

Contract on Construction of Jordan NPP by Russia Likely Within 2 Years

SOLAR DAILY
To reach CO2, energy goals, combine technologies with stable policies

EDF for carbon price floor

Shift from fossil fuels risks popping 'carbon bubble': World Bank

DOE selects UC Berkeley to lead US-China energy and water consortium

SOLAR DAILY
Climbing plants disturb carbon storage in tropical forests

Extreme Amazon weather could have global climate consequences

Smithsonian scientists say vines strangle carbon storage in tropical forests

Broadleaf trees show reduced sensitivity to global warming




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement