Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. Solar Energy News .




SOLAR DAILY
Promising News for Solar Fuels from Berkeley Lab Researchers at JCAP
by Lynn Yarris for Berkeley News
Berkeley CA (SPX) Mar 08, 2014


From left, Diana Cedeno, Gary Moore and Alexandra Krawicz of the Joint Center for Artificial Photosynthesis conducted an efficiency analysis study of a unique photocathode material designed to store solar energy in hydrogen molecules. Image courtesy Roy Kaltschmidt.

There's promising news from the front on efforts to produce fuels through artificial photosynthesis. A new study by Berkeley Lab researchers at the Joint Center for Artificial Photosynthesis (JCAP) shows that nearly 90-percent of the electrons generated by a hybrid material designed to store solar energy in hydrogen are being stored in the target hydrogen molecules.

Gary Moore, a chemist and principal investigator with Berkeley Lab's Physical Biosciences Division, led an efficiency analysis study of a unique photocathode material he and his research group have developed for catalyzing the production of hydrogen fuel from sunlight. This material, a hybrid formed from interfacing the semiconductor gallium phosphide with a molecular hydrogen-producing cobaloxime catalyst, has the potential to address one of the major challenges in the use of artificial photosynthesis to make renewable solar fuels.

"Ultimately the renewable energy problem is really a storage problem," Moore says. "Given the intermittent availability of sunlight, we need a way of using the sun all night long. Storing solar energy in the chemical bonds of a fuel also provides the large power densities that are essential to modern transport systems. We've shown that our approach of coupling the absorption of visible light with the production of hydrogen in a single material puts photoexcited electrons where we need them to be, stored in chemical bonds."

Moore is the corresponding author of a paper describing this research in the journal Physical Chemistry Chemical Physics titled "Energetics and efficiency analysis of a cobaloxime-modified semiconductor under simulated air mass 1.5 illumination." Co-authors are Alexandra Krawicz and Diana Cedeno.

Bionic leaves that produce energy-dense fuels from nothing more than sunlight, water and atmosphere-warming carbon dioxide, with no byproducts other than oxygen, represent an ideal sustainable energy alternative to fossil fuels. However, realizing this artificial photosynthesis ideal will require a number of technological breakthroughs including high performance photocathodes that can catalyze fuel production from sunlight alone.

Last year, Moore and his research group at JCAP took an important step towards the photocathode goal with their gallium phosphide/cobaloxime hybrid. Gallium phosphide is an absorber of visible light, which enables it to produce significantly higher photocurrents than semiconductors that only absorb ultraviolet light.

The cobaloxime catalyst is also Earth-abundant, meaning it is a relatively inexpensive replacement for the highly expensive precious metal catalysts, such as platinum, currently used in many solar-fuel generator prototypes.

"The novelty of our approach is the use of molecular catalytic components interfaced with visible-light absorbing semiconductors," Moore says. "This creates opportunities to use discrete three-dimensional environments for directly photoactivating the multi-electron and multi-proton chemistry associated with the production of hydrogen and other fuels."

The efficiency analysis performed by Moore and his colleagues also confirmed that the light-absorber component of their photocathode is a major bottleneck to obtaining higher current densities. Their results showed that of the total number of solar photons striking the hybrid-semiconductor surface, measured over the entire wavelength range of the solar spectrum (from 200 to 4,000 nanometers) only 1.5-percent gave rise to a photocurrent.

"This tells us that the use of light absorbers with improved spectral coverage of the sun is a good start to achieving further performance gains, but it is likely we will also have to develop faster and more efficient catalysts as well as new attachment chemistries. Our modular assembly method provides a viable strategy to testing promising combinations of new materials," Moore says.

"Efficiency is not the only consideration that should go into evaluating materials for applications in solar-fuel generator technologies. Along with the durability and feasible scalability of components, the selectivity of photoactivating a targeted reaction is also critical. This is where molecular approaches offer significant opportunities, especially in catalyzing complex chemical transformations such as the reduction of carbon dioxide."

.


Related Links
Berkeley Lab
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





SOLAR DAILY
Team models photosynthesis and finds room for improvement
Champaign IL (SPX) Mar 06, 2014
Teaching crop plants to concentrate carbon dioxide in their leaves could increase photosynthetic efficiency by 60 percent and yields by as much as 40 percent, researchers report in a new study. The team used a computer model to simulate how adding genes from a type of photosynthetic algae known as cyanobacteria might influence photosynthetic efficiency in plants. Cyanobacteria contain smal ... read more


SOLAR DAILY
Boeing, South African Airways Explore Ways for Farmers to Grow More Sustainable Biofuel Crops

MSU advances algae's viability as a biofuel

Entomologists update definitions to tackle resistance to biotech crops and pesticides

Plants convert energy at lightning speed

SOLAR DAILY
Touchy-feely joystick heading to ISS

NVision Introduces RoboScanner

Rolls-Royce believes time of drone cargo ships has come

Kinshasa co-op hopes to conquer the world with traffic robots

SOLAR DAILY
Taming hurricanes

Wind farms can tame hurricanes: scientists

Draft report finds no reliable link between wind farms and health effects

Czech wind power generation up 'disappointing' 15 percent in 2013

SOLAR DAILY
Is the time right for new energy vehicles

Gold-plated car shines at Geneva Motor Show

Smart grid for electric vehicle fleet

Siri gets a seat in iPhone-friendly cars

SOLAR DAILY
New Spy Technology to Spawn Oil Revolution

Environmentalists warn of Spain oil-drilling

Iceland environmentalists protest as China joins Arctic oil race

Chevron wins US case against $9.5 bn Ecuador fine

SOLAR DAILY
Greenpeace protests Europe's ageing nuclear plants

Tens of thousands stage anti-nuclear rally in Tokyo

Thousands rally for end to nuclear Taiwan

Ukraine tightening nuclear security

SOLAR DAILY
Dubai donors pledge $11 mn for UN-led 'green' economy push

Geothermal offers cost-effective alternative to volatile fuel prices and propane shortages

US moves ahead on massive Africa power bid

Renewable Generation up 30% Last Week as Gas Consumption Plummets 35%

SOLAR DAILY
Pine forest particles appear out of thin air, influence climate

UNEP launches global platform to protect forests

Massive logging leaves deep scars in Eastern Europe

Forest model predicts canopy competition




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.