Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. Solar Energy News .




SOLAR DAILY
Researchers find rust can power up artificial photosynthesis
by Staff Writers
Chestnut Hill MA (SPX) Oct 15, 2013


Taking Mother Nature's lead, researchers have sought new methods and materials capable of mimicking photosynthesis. Researchers at Boston College report that modifying the surface of hematite with a nickel iron oxide coating produces an increase in cathode photovoltage of nearly four-tenths of a volt. That's nearly enough energy to put an economical method of artificial photosynthesis within reach. Credit: Angewandte Chemie.

Chemists at Boston College have achieved a series of breakthroughs in their efforts to develop an economical means of harnessing artificial photosynthesis by narrowing the voltage gap between the two crucial processes of oxidation and reduction, according to their latest research, published this week in the journal Angewandte Chemie.

The team reports it has come within two-tenths of the photovoltage required to mimic oxidation and reduction respectively using unique photoanodes and photocathodes the team developed using novel nanowire components and coatings. Narrowing the gap using economical chemical components, the group moves researchers closer to using the man-made reaction for unique applications such as solar energy harvesting and storage.

"Many researchers have been trying to harvest solar energy and directly store it in chemical bonds," said lead author Dunwei Wang, an associate professor of chemistry at Boston College. "Solar panels can harvest energy, but economical storage has remained elusive. We are trying to borrow a page from Mother Nature whereby photosynthesis produces energy from the sun and stores it."

But copying Mother Nature is a tall order and this particular quest "requires materials that can absorb sunlight broadly, transfer the energy to excited charges at high efficiencies and catalyze specific reduction and oxidation reactions," the team writes in the article "Hematite-Based Water Splitting with Low Turn-on Voltage."

Natural photosynthesis consists of two important processes. Oxidation produces oxygen gas. Reduction produces organic molecules. Wang said artificial photosynthesis, also known as water splitting, tries to copy these two reactions using a photoanode to oxidize water and a photocathode to either reduce water for hydrogen production or to reduce carbon dioxide for organic molecules.

But in an artificial environment, a gap has persisted in the voltage required on either side of the reaction in order achieve these results, Wang said. In essence, oxidation and reduction require 1.2 to 1.3 volts combined to achieve the charge required to power artificial photosynthesis.

Previously, only rare materials allowed researchers bridge the gap, but those efforts are prohibitively expensive for widespread application. Wang and his lab have spent the past two years searching for inexpensive alternatives to bridge the voltage gap.

Earlier this year, the lab reported it had developed a new cathode preparation technique to improve hydrogen production. The findings removed most of the barriers to constructing an inexpensive, yet highly efficient photocathode, Wang said.

The team's latest research produced advances in photoanode development, where their engineered nanowire structures enabled the team to achieve a photovoltage of .6 volts using an iron oxide material. The voltage represents a 50 percent increase above the best prior results, which were reported last year. The results put Wang and his team within two-tenths of a volt of the necessary photovoltage.

The team achieved the gains by coating hematite, an iron oxide similar to rust, with nickel iron oxide.

Already, the team has yielded more than 1 volt of power when combined with the photocathode they developed earlier this year, said Wang, whose team included post-doctoral researcher Xiaogang Yang, graduate students Chun Du, Matthew T. Mayer and Jin Xie, undergraduates Henry Hoyt and Gregory Bischoping and Gregory McMahon, a nanolithography and electron microscopy manager at BC's Nanofabrication Clean Room.

"Our system, made of oxygen, silicon and iron - three of the four most abundant elements on earth - can now provide more than 1 volt of power together," said Wang. "Now we are just two-tenths of a volt short on the photoanode. That's a significant narrowing of the gap."

He says closing the gap completely is entirely within reach, particularly since other researchers have used different systems to do so. He said his lab might partner with other researchers in an effort to close the gap.

"With our innovations on the photocathode alone, this two-tenths of a volt is within reach," said Wang. "The real exciting part is that we were able to achieve six tenths of a volt using rust. That has never been done before."

.


Related Links
Boston College
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





SOLAR DAILY
Trina Solar supplies 5MW to ESPE for ground-mounted project in Romania
London, UK (SPX) Oct 14, 2013
Trina Solar has announced that it has recently supplied 5MW to ESPE, a leading Italian company that designs and installs reliable green energy systems, for a ground-mounted project in Romania. The large-scale solar installation is part of a 20MW project led by ESPE. This first phase consists of two installations of 2.5MW each, and will provide an expected annual output of 6.6GWh and a savi ... read more


SOLAR DAILY
Metabolically engineered E. coli producing phenol

Team uses a cellulosic biofuels byproduct to increase ethanol yield

Working together: bacteria join forces to produce electricity

UCLA engineers develop new metabolic pathway to more efficiently convert sugars into biofuels

SOLAR DAILY
Northrop Grumman's CaMEL to Participate in Robotic Armed Live Fire Demo

Russia to launch first android robot to ISS

Better robot vision

Surprisingly simple scheme for self-assembling robots

SOLAR DAILY
Installation of the first AREVA turbines at Trianel Windpark Borkum and Global Tech 1

Trump's suit to halt wind farm project to be heard in November

Ireland connects first community-owned wind farm to grid

Moventas significantly expands wind footprint

SOLAR DAILY
Anger over German stance on auto CO2 emissions

Romanians saddle up for bike Renaissance

China auto sales jump 19.7% in September

Toyota unveils cars with auto pilot

SOLAR DAILY
Radioactive shale gas contaminants found at wastewater discharge site

Don't Be Fooled by Libya - This is a Failed State

Clues to foam formation could help find oil

Russian court rules to keep more Greenpeace activists in jail

SOLAR DAILY
Once-in-a-decade typhoon heads for Japan nuclear plant

Japan nuclear export parts not safety checked: report

IAEA to advise Japan on Fukushima clean-up

Nuclear power still key to Japan energy mix: officials

SOLAR DAILY
US push for electric power surge in Africa hits climate snag

Asian growth changing global energy landscape

Global action needed for energy 'trilemma'

Global energy meet highlights challenge of growing demand

SOLAR DAILY
Historic trends predict future global reforestation unlikely

Forests most likely to continue shrinking

Death of a spruce tree

Alarming suicide rates among Brazil's Guarani Indians




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement