Subscribe to our free daily newsletters
  Solar Energy News  




Subscribe to our free daily newsletters



SOLAR DAILY
Researchers set time limit for ultrafast perovskite solar cells
by Staff Writers
Cambridge UK (SPX) Oct 03, 2017


file image only

Researchers have quantified the astonishingly high speeds at which future solar cells would have to operate in order to stretch what are presently seen as natural limits on their energy conversion efficiency.

The study, which investigated photovoltaic devices based on a type of materials called perovskites, suggests that these could achieve unprecedented levels of super-efficiency. But to do so, they will need to turn sunlight into electrons and then extract these as electrical charge within just quadrillionths of a second - a few "femtoseconds", to give them their scientific name.

Moving electrons at this ultrafast rate would enable the creation of "hot carrier" cells. These are solar cells which can generate electricity more efficiently by making use of the added kinetic energy that electrons have for a brief moment just after they are created, while they are moving at high speed.

The amount of electrical energy that can be extracted from a hot carrier cell, relative to the amount of light absorbed, could potentially match or even break an energy efficiency rate of 30%. In rough terms, this is the maximum energy efficiency that solar cells can conceivably achieve - although standard silicon cells typically have efficiencies closer to 20% in practice.

Despite the minuscule fractions of time involved, the authors of the new paper say that it is possible that perovskites could ultimately push this efficiency barrier.

The study, published in the journal Nature Communications, was carried out by academics in Italy and the UK. The British team involved researchers in the Cavendish Laboratory's Optoelectronics research group of Professor Sir Richard Friend, a Fellow of St John's College, Cambridge. The Italian team are based at the Politecnico di Milano in the group of Professor Guilio Cerullo.

Johannes Richter, a PhD student in the Optoelectronics group and the paper's lead author, said: "The timescale that we calculated is now the time limit that we have to operate within if we want to create super-efficient, hot carrier solar devices. We would need to get electrons out before this tiny amount of time elapses."

"We are talking about doing this extremely quickly, but it's not impossible that it could happen. Perovskite cells are very thin and this gives us hope, because the distance that the electrons have to cover is therefore very short."

Perovskites are a class of materials which could before long replace silicon as the material of choice for many photovoltaic devices. Although perovskite solar cells have only been developed within the past few years, they are already almost as energy-efficient as silicon.

Partly because they are considerably thinner, they are much cheaper to make. While silicon cells are about a millimetre thick, perovskite equivalents have a thickness of approximately one micrometre, about 100 times thinner than a human hair. They are also very flexible, meaning that in addition to being used to power buildings and machines, perovskite cells could eventually be incorporated into things like tents, or even clothing.

In the new study, the researchers wanted to know for how long the electrons produced by these cells retain their highest possible levels of energy. When sunlight hits the cell, light particles (or photons), are converted into electrons. These can be drawn out through an electrode to harvest electrical charge.

For a brief moment after they are created, the electrons are moving very quickly. However, they then start to collide, and lose energy. Electrons which retain their speed, prior to collision, are known as "hot" and their added kinetic energy means that they have the potential to produce more charge.

"Imagine if you had a pool table and each ball was moving at the same speed," Richter explained. "After a certain amount of time, they are going to hit each other, which causes them to slow down and change direction. We wanted to know how long we have to extract the electrons before this happens."

The Cambridge team took advantage of a method developed by their colleagues in Milan called two dimensional spectroscopy. This involves pumping light from two lasers on to samples of lead iodide perovskite cell in order to simulate sunlight, and then using a third "probe" laser to measure how much light is being absorbed.

Once the electrons have collided and slowed down, and are thus starting to take up space in the cell, the amount of light being absorbed changes. The time it took for this to happen in the study effectively allowed the researchers to establish how much time is available to extract electrons while they are still "hot".

The study found that electron collision events started to happen between 10 and 100 femtoseconds after light was initially absorbed by the cell. To maximise energy efficiency, the electrons would thus need to reach the electrode in as little as 10 quadrillionths of a second.

The researchers are nonetheless optimistic that this might be possible. As well as taking advantage of the intrinsic thinness of perovskite, they believe that nanostructures could be created within the cells to reduce further the distance that the electrons need to travel.

"That approach is just an idea for now, but it is the sort of thing that we would require in order to overcome the very small timescales that we have measured," Richter added.

The paper, Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy, is published in Nature Communications.

Research paper

SOLAR DAILY
PrISUm Announces Corporate Partnerships with Baron
Ames IA (SPX) Oct 03, 2017
PrISUm is proud to announce our corporate partnership with Baron. PrISUm is the Iowa State University Solar Car Team, a student run organization which designs, builds, and races vehicles powered by the sun. Baron is a global provider of Critical Weather Intelligence to industry and government PrISUm's mission is to change the paradigm of transportation, and in doing so inspire future gener ... read more

Related Links
St John's College, University of Cambridge
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Bioreactors on a chip renew promises for algal biofuels

Researchers develop 3-D-printed biomaterials that degrade on demand

Enzyme's worth to biofuels shown in latest NREL research

Algae with light switch

SOLAR DAILY
Smash hit: Ping pong robot takes on Olympian at Tokyo tech fair

Robot Spelunkers Go for a Dip

Click beetles inspire design of self-righting robots

Creative use of noise brings bio-inspired electronic improvement

SOLAR DAILY
Germany gets economic lift with wind energy

French energy company to build wind power sector in India

Finding better wind energy potential with the new European Wind Atlas

Last of the 67 turbines for a British wind farm installed

SOLAR DAILY
General Motors targets 20 all-electric models by 2023

Tata wins bid to make electric cars for Indian government

Paris experiments with 'car-free day' across the city

Rubber meets road for Pirelli's market comeback

SOLAR DAILY
Scientists harvest electricity from tears

Small scale energy harvesters show large scale impact

Research led by PPPL provides reassurance that heat flux will be manageable in ITER

Energy harvested from evaporation could power much of US, says study

SOLAR DAILY
Largest Nuclear Training Center In France Opens Its Doors

BWXT awarded contract extension for nuclear waste facility operations

UAE to open Arab Gulf's first nuclear reactor in 2018

Russia floats out powerful nuclear icebreaker

SOLAR DAILY
'Fuel-secure' steps in Washington counterintuitive, green group says

SLAC-led project will use AI to prevent or minimize electric grid failures

Scientists propose method to improve microgrid stability and reliability

ADB: New finance model needed for low-carbon shift in Asia

SOLAR DAILY
Forest loss means tropics emit more carbon than they trap: study

Brazil scraps bid to mine Amazon natural reserve

American oaks share a common northern ancestor

Forest fires are not limited to hot or temperate climates




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement