Solar Energy News  
Scientists Work To Convert Sunlight To Cheaper Energy

Qiao and his SDSU colleagues also are working on organic light-emitting diodes, or OLEDs.
by Staff Writers
Brookings SD (SPX) Aug 26, 2008
Scientists work to convert sunlight to cheaper electricity at South Dakota State University. Research scientists are working with new materials that can make devices used for converting sunlight to electricity cheaper and more efficiently.

Assistant professor Qiquan Qiao in SDSU's Department of Electrical Engineering and Computer Science said so-called organic photovoltaics, or OPVs, are less expensive to produce than traditional devices for harvesting solar energy.

Qiao and his SDSU colleagues also are working on organic light-emitting diodes, or OLEDs.

The new technology is sometimes referred to as "molecular electronics" or "organic electronics" - organic because it relies on carbon-based polymers and molecules as semiconductors rather than inorganic semiconductors such as silicon.

"Right now the challenge for photovoltaics is to make the technology less expensive," Qiao said.

"Therefore, the objective is find new materials and novel device structures for cost-effective photovoltaic devices.

"The beauty of organic photovoltaics and organic LEDs is low cost and flexibility," the researcher continued.

"These devices can be fabricated by inexpensive, solution-based processing techniques similar to painting or printing.

"The ease of production brings costs down, while the mechanical flexibility of the materials opens up a wide range of applications," Qiao concluded.

Organic photovoltaics and organic LEDs are made up of thin films of semiconducting organic compounds that can absorb photons of solar energy.

Typically an organic polymer, or a long, flexible chain of carbon-based material, is used as a substrate on which semiconducting materials are applied as a solution using a technique similar to inkjet printing.

"The research at SDSU is focused on new materials with variable band gaps," Qiao said.

"The band gap determines how much solar energy the photovoltaic device can absorb and convert into electricity."

Qiao explained that visible sunlight contains only about 50 percent of the total solar energy. That means the sun is giving off just as much non-visible energy as visible energy.

"We're working on synthesizing novel polymers with variable band gaps, including high, medium and low-band gap varieties, to absorb the full spectrum of sunlight. By this we can double the light harvesting or absorption," Qiao said.

SDSU's scientists plan to use the variable band gap polymers to build multi-junction polymer solar cells or photovoltaics.

These devices use multiple layers of polymer/fullerene films that are tuned to absorb different spectral regions of solar energy.

Ideally, photons that are not absorbed by the first film layer pass through to be absorbed by the following layers.

The devices can harvest photons from ultraviolet to visible to infrared in order to efficiently convert the full spectrum of solar energy to electricity.

SDSU scientists also work with organic light-emitting diodes focusing on developing novel materials and devices for full color displays.

"We are working to develop these new light-emitting and efficient, charge-transporting materials to improve the light-emitting efficiency of full color displays," Qiao said.

Currently, LED technology is used mainly for signage displays. But in the future, as OLEDs become less expensive and more efficient, they may be used for residential lighting, for example.

The new technology will make it easy to insert lights into walls or ceilings. But instead of light bulbs, the lighting apparatus of the future may look more like a poster, Qiao said.

Qiao and his colleagues are funded in part by SDSU's electrical engineering Ph.D. program and by National Science Foundation and South Dakota EPSCoR, the Experimental Program to Stimulate Competitive Research.

In addition Qiao is one of about 40 faculty members from SDSU, the South Dakota School of Mines and Technology and the University of South Dakota who have come together to form Photo Active Nanoscale Systems (PANS).

The primary purpose is developing photovoltaics, or devices that will directly convert light to electricity.

Related Links
South Dakota State University
All About Solar Energy at SolarDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Helios Technology's New 30MW Line Up And Running
Carmignano di Brenta, Italy (SPX) Aug 26, 2008
The new 30MW line for the production of high-efficiency mono and multicrystalline silicon photovoltaic cells at Helios Technology, historical Italian leader in the production of cells, modules and photovoltaic components is fully up and running.







  • Nuke reactor designated historic landmark
  • Heads of Spain's nuclear plants to meet after fire: watchdog
  • Jordan to buy French nuclear reactor
  • Japan-Australia nuclear group to look at India deal

  • Climate Change Could Be Impetus For Wars, Other Conflicts
  • Drier, Warmer Springs In US Southwest Stem From Human Effect On Winds
  • Bones Beat Trees As Markers For Environmental Change
  • Droughts Have Lasted Centuries In Eastern North America

  • A New Biopesticide For The Organic Food Boom
  • Biofuels, food crops straining world water reserves: experts
  • Tracking A Crop Disease Could Save Millions Of Lives
  • Student study unmasks sushi scandal in New York

  • Exploding Chromosomes Fuel Research About Evolution
  • Shipwrecks On Coral Reefs Harbor Unwanted Species
  • Genome Of Simplest Animal Reveals Ancient Lineage
  • Mirror self-recognition found in magpies

  • Test rocket destroyed by NASA after launch
  • NASA to use shock-absorbers to fix shaking in new Ares rocket
  • NASA And ATK To Launch Suborbital Hypersonic Experiments
  • Andrews Awarded Aerojet Contract To Build Hardware For Sundancer

  • Nuclear Power In Space - Part 2
  • Outside View: Nuclear future in space
  • Nuclear Power In Space

  • GOCE To Look At The Earth Surface And Core
  • Tropical Storm Fay's Center Now Moving Inland
  • Saharan Dry, Dusty Air Lessened Intensity Of 2007 Hurricane Season
  • Ball Aerospace Begins Final Prep For NPOESS OMPS Instrument

  • Key Advance Toward Micro-Spacecraft
  • MIT's Lincoln Lab Upgrades Sputnik-Era Antenna
  • New Metamaterials Bend Light Backwards
  • GMV Releases Hifly 6 Satellite Control System

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement