Subscribe to our free daily newsletters
  Solar Energy News  




Subscribe to our free daily newsletters



SOLAR DAILY
Speeding up key oxygen-oxygen bond-formation step in water oxidation
by Staff Writers
Upton NY (SPX) May 19, 2016


The research team, left to right are: Brookhaven Lab research collaborator David Szalda, Baruch College; David Shaffer, Yan Xie, and Javier Concepcion, Brookhaven Lab. Not pictured are: Anna Lewandowska-Andralojc, Adam Mickiewicz University. Image courtesy Brookhaven National Laboratory. For a larger version of this image please go here.

For years, scientists have been trying to emulate photosynthesis, the process by which plants, algae, and some bacteria harness light from the sun to chemically transform water and carbon dioxide into energy that is stored for later use. An artificial version of photosynthesis could provide a clean, renewable source of energy to help satisfy society's growing demands. For artificial photosynthesis to become a viable alternative to fossil fuels, the efficiency and speed of water oxidation - the reaction that turns water into oxygen gas, hydrogen ions, and electrons - is one of the processes that must be improved.

Now, a team of scientists from the U.S. Department of Energy's Brookhaven National Laboratory, Adam Mickiewicz University, and Baruch College, City University of New York, has synthesized two new molecular catalysts for water oxidation. The catalysts - complexes of ruthenium surrounded by binding molecules (ligands) containing phosphonate groups - accelerate the formation of the oxygen-oxygen bond, usually the most energy-intensive and slowest step of water oxidation.

Initial studies, described in a paper published on May 11 in Angewandte Chemie International Edition, demonstrated that these ruthenium complexes could offer a low-energy pathway to faster water oxidation.

"Storing solar energy as hydrogen fuel or carbon-based fuels like methanol requires catalysts that can oxidize water at fast rates, with high efficiency, and for long periods of time," said Javier Concepcion, an author of the paper and a chemist in the artificial photosynthesis group at Brookhaven Lab.

"Our ruthenium complexes catalyze the oxygen-oxygen bond formation faster than any other known catalysts, generating hundreds of oxygen molecules per molecule of catalyst per second. With these catalysts, the electrical potential required to start the reaction is approximately 10 times less than that of a AA battery."

Forming the oxygen-oxygen bond
In water oxidation, four protons and four electrons - required in a subsequent reaction to convert carbon dioxide into usable energy - are removed from two water molecules, and an oxygen-oxygen bond is formed. For water oxidation to occur, the bonds between hydrogen and oxygen atoms in the two water molecules must be broken. In the case of artificial photosynthesis, a chemical catalyst triggers this molecular breakup.

"Water is a very stable molecule, so getting two water molecules to react with each other is very difficult," explained first author Yan Xie, a doctoral candidate at Stony Brook University and a research assistant in Brookhaven's artificial photosynthesis group. "Our ruthenium complexes provide the reactivity needed to break those bonds."

The paper describes details of the series of steps through which the catalyst initiates and completes the reaction. In short, one of the water molecules binds to the ruthenium complex and loses protons as the complex is oxidized (loses electrons), resulting in an electron-deficient ruthenium-oxo group. Then, with the assistance of a phosphonate group, the other water molecule reacts with this highly reactive ruthenium-oxo to release molecular oxygen (O2).

"The phosphonate group accepts protons, or hydrogen ions, from water," said coauthor David Shaffer, a research associate in Brookhaven's Chemistry Department. "It is positioned near the active site of the ruthenium complex where water oxidation occurs. Incorporating the phosphonate group and ruthenium in a single complex makes it easy for the water molecule to find that one site and react." Eventually, the protons are transferred from the phosphonate group to the surrounding solution.

Studying the electrochemistry of the ruthenium complexes
To determine the efficiency and rate of water oxidation with the ruthenium catalysts, the team studied the electrochemistry of each oxidation state by applying different voltages and measuring the amount of current flowing through the system at various pH values (the concentration of protons in the solution).

"The voltage at which catalysis starts tells you about the energy efficiency of water oxidation, while the current tells you how quickly water oxidation is occurring," explained Concepcion. "Our ruthenium complexes minimize the amount of energy lost as heat, both in terms of the voltage and the rate that would be required for the catalyst, if incorporated into a device, to make use of all incoming sunlight."

The team also used computational modeling to study the activation parameters - the energy and molecular order - required to break and make bonds during the key reaction between the water molecule and the ruthenium-oxo group.

The computational studies showed why the phosphonate group resulted in faster catalysis. "Phosphonate is a good proton acceptor, so it energetically favors the reaction. Because it is part of the ligand, it is already positioned and ready to interact with water, removing the need for a more ordered arrangement of molecules," said Concepcion.

From separate studies, the scientists were able to tell that one of the oxidation steps - not the oxygen-oxygen bond formation step - was limiting the rate of the catalysis. The team is now developing second-generation catalysts to optimize this step.

Eventually, they hope to make equally reactive catalysts using metals such as iron and cobalt that are more abundant and less expensive than ruthenium, but whose chemistries are much more complicated.

"By incorporating these catalysts into systems capable of absorbing sunlight and combining them with catalysts that reduce carbon dioxide or water into fuels, artificial photosynthesis could become a practical approach for storing solar energy as fuels," said Concepcion.

Research paper: "Water Oxidation by Ruthenium Complexes Incorporating Multifunctional Bipyridyl Diphosphonate Ligands"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Brookhaven National Laboratory
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SOLAR DAILY
Australian engineers edge closer to the theoretical limits of sunlight-to-electricity conversion
Sydney, Australia (SPX) May 19, 2016
A new solar cell configuration developed by engineers at the University of New South Wales in Sydney has pushed sunlight-to-electricity conversion efficiency to 34.5% - establishing a new world record for unfocussed sunlight and nudging closer to the theoretical limits for such a device. The record was set by Dr Mark Keevers and Professor Martin Green, Senior Research Fellow and Director, ... read more


SOLAR DAILY
Alkol Biotech sells large batch of sugarcane bagasse for 2G ethanol testing

Industry Weighs in on Green Aviation Tech

Berkeley Lab scientists brew jet fuel in 1-pot recipe

UNT researchers discover potential new paths for plant-based bioproducts

SOLAR DAILY
Hybrid hydrostatic transmission enables robots with human-like grace and precision

China's Midea makes takeover offer for German robotics firm

Researchers teach AI system to run complex physics experiment

Ingestible robot operates in simulated stomach

SOLAR DAILY
Argonne coating shows surprising potential to improve reliability in wind power

SeaPlanner is Awarded Contract for Rampion Offshore Wind Farm

British share of renewables setting records

DNV GL-led project gives green light for wind-powered oil recovery

SOLAR DAILY
Waze squeezes into Uber's lane with carpool feature

Tesla raising cash to fund accelerated production

Innovative traffic interchanges help drivers avoid crashes, save lives

General Motors' Opel unit in hot seat over emissions

SOLAR DAILY
Technique improves the efficacy of fuel cells

Enhancing lab-on-a-chip peristalsis with electro-osmosis

Researchers integrate diamond/boron layers for high-power devices

Speedy ion conduction clears road for advanced energy devices

SOLAR DAILY
Delay to NuGen nuclear power plant in England

Hollande renews support for EDF nuclear project in Britain

Towards decommissioning Fukushima: 'Seeing' boron distribution in molten debris

AREVA awarded decontamination contract for Grafenrheinfeld Power Plant

SOLAR DAILY
Changing the world, 1 fridge at a time

Could off-grid electricity systems accelerate energy access

EU court overturns carbon market free quotas

Global leaders agree to set price on carbon pollution

SOLAR DAILY
US must step-up forest pest prevention

Californian sudden oak death epidemic 'unstoppable'

Amazon rainforest responds quickly to extreme climate events

Old-growth forests may provide buffer against rising temperatures




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement