Subscribe free to our newsletters via your
. Solar Energy News .




SOLAR DAILY
Stanford researchers stretch a thin crystal to get better solar cells
by Staff Writers
Stanford CA (SPX) Jun 28, 2015


This colorized image shows an ultra thin layer of semiconductor material stretched over the peaks and valleys of part of a device the size of a pinkie nail. Just three atoms thick, this semiconductor layer is stretched in ways enhance its electronic potential to catch solar energy. The image is enlarged 100,000 times. Image courtesy Hong Li, Stanford Engineering. For a larger version of this image please go here.

Nature loves crystals. Salt, snowflakes and quartz are three examples of crystals - materials characterized by the lattice-like arrangement of their atoms and molecules. Industry loves crystals, too. Electronics are based on a special family of crystals known as semiconductors, most famously silicon.

To make semiconductors useful, engineers must tweak their crystalline lattice in subtle ways to start and stop the flow of electrons. Semiconductor engineers must know precisely how much energy it takes to move electrons in a crystal lattice. This energy measure is the band gap.

Semiconductor materials like silicon, gallium arsenide and germanium each have a band gap unique to their crystalline lattice. This energy measure helps determine which material is best for which electronic task. Now an interdisciplinary team at Stanford has made a semiconductor crystal with a variable band gap. Among other potential uses, this variable semiconductor could lead to solar cells that absorb more energy from the sun by being sensitive to a broader spectrum of light.

The material itself is not new. Molybdenum disulfide, or MoS2, is a rocky crystal, like quartz, that is refined for use as a catalyst and a lubricant. But in Nature Communications, Stanford mechanical engineer Xiaolin Zheng and physicist Hari Manoharan proved that MoS2 has some useful and unique electronic properties that derive from how this crystal forms its lattice.

Molybdenum disulfide is what scientists call a monolayer: A molybdenum atom links to two sulfurs in a triangular lattice that repeats sideways like a sheet of paper. The rock found in nature consists of many such monolayers stacked like a ream of paper. Each MoS2 monolayer has semiconductor potential. "From a mechanical engineering standpoint, monolayer MoS2 is fascinating because its lattice can be greatly stretched without breaking," Zheng said.

By stretching the lattice, the Stanford researchers were able to shift the atoms in the monolayer. Those shifts changed the energy required to move electrons. Stretching the monolayer made MoS2 something new to science and potentially useful in electronics: an artificial crystal with a variable band gap.

"With a single, atomically thin semiconductor material we can get a wide range of band gaps," Manoharan said. "We think this will have broad ramifications in sensing, solar power and other electronics." Scientists have been fascinated with monolayers since the Nobel Prize-winning discovery of graphene, a lattice made from a single layer of carbon atoms laid flat like a sheet of paper.

In 2012, nuclear and materials scientists at MIT devised a theory that involved the semiconductor potential of monolayer MoS2. With any semiconductor, engineers must tweak its lattice in some way to switch electron flows on and off. With silicon, the tweak involves introducing slight chemical impurities into the lattice.

In their simulation, the MIT researchers tweaked MoS2 by stretching its lattice. Using virtual pins, they poked a monolayer to create nanoscopic funnels, stretching the lattice and, theoretically, altering MoS2's band gap. Band gap measures how much energy it takes to move an electron. The simulation suggested the funnel would strain the lattice the most at the point of the pin, creating a variety of band gaps from the bottom to the top of the monolayer.

The MIT researchers theorized that the funnel would be a great solar energy collector, capturing more sunlight across a wide swath of energy frequencies. When Stanford postdoctoral scholar Hong Li joined the mechanical engineering department in 2013, he brought this idea to Zheng. She led the Stanford team that ended up proving all of this by literally standing the MIT theory on its head.

Instead of poking down with imaginary pins, the Stanford team stretched the MoS2 lattice by thrusting up from below. They did this - for real rather than in simulation - by creating an artificial landscape of hills and valleys underneath the monolayer.

They created this artificial landscape on a silicon chip, a material they chose not for its electronic properties, but because engineers know how to sculpt it in exquisite detail. They etched hills and valleys onto the silicon. Then they bathed their nanoscape with an industrial fluid and laid a monolayer of MoS2 on top.

Evaporation did the rest, pulling the semiconductor lattice down into the valleys and stretching it over the hills.

Alex Contryman, a PhD student in applied physics in Manoharan's lab, used scanning tunneling microscopy to determine the positions of the atoms in this artificial crystal. He also measured the variable band gap that resulted from straining the lattice this way. The MIT theorists and specialists from Rice University and Texas A and M University contributed to the Nature Communications paper.

Team members believe this experiment sets the stage for further innovation on artificial crystals. "One of the most exciting things about our process is that is scalable," Zheng said. "From an industrial standpoint, MoS2 is cheap to make." Added Manoharan: "It will be interesting to see where the community takes this."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Stanford School of Engineering
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





SOLAR DAILY
Solar Impulse could be stuck in Japan for a year: pilot
Geneva (AFP) June 25, 2015
A solar-powered plane attempting to fly around the world must cross the Pacific within a few weeks or it could remain stuck in Japan for a year, its pilot said in an interview published Thursday. Solar Impulse 2, which has been stranded in Japan for three weeks and had to postpone a planned take off this week due to bad weather over the Pacific, only has a short window for making the next le ... read more


SOLAR DAILY
Synthetic biology used to engineer new route to biochemicals

Unlocking fermentation secrets open the door to new biofuels

Elucidation of chemical ingredients in rice straw

Better switchgrass, better biofuel

SOLAR DAILY
Engineers develop micro-tentacles so tiny robots can handle delicate objects

IBM's Chef Watson shares his culinary artifcial intelligence

Cockroach-inspired robot can navigate cluttered environs

Planarian regeneration model discovered by artificial intelligence

SOLAR DAILY
Successful Commissioning Of HelWin2 HVDC Grid Connection

Winds of change as Ethiopia harnesses green power

Viaducts with wind turbines, the new renewable energy source

Scotland plans emergency wind energy talks

SOLAR DAILY
A learning method for energy optimization of the plug-in hybrid electric bus

Physical study may give boost to hydrogen cars

Researchers build mini Jeep that turns tire friction into energy

Digital messages on vehicle windshields make driving less safe

SOLAR DAILY
Carnegie Mellon chemists characterize 3-D macroporous hydrogels

Researchers confirm novel method for controlling plasma rotation

Discovery paves way for new kinds of superconducting electronics

New technique for 'seeing' ions at work in a supercapacitor

SOLAR DAILY
Austria delays complaint against UK nuclear power plant

German lawmakers call for end to subsidies as nuclear failures continue

Saudi Arabia to Turn to Russian Expertise in Nuclear Energy

France to study building nuclear reactors in Saudi Arabia

SOLAR DAILY
New formula expected to spur advances in clean energy generation

Access to electricity is linked to reduced sleep

Dutch court orders state to slash greenhouse emissions

Renewables record year uncouples growth of global economy from CO2

SOLAR DAILY
In Beirut, a green paradise off-limits to Lebanese

Some forestlands cool climate better without trees

Lax rules put Congo's forests, key carbon reserve, at risk

A contentious quest for Kevazingo, Gabon's sacred tree




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.