Subscribe free to our newsletters via your
. Solar Energy News .




SOLAR DAILY
X-ray imaging paves way for novel solar cell production
by Staff Writers
Hamburg, Germany (SPX) Sep 10, 2014


Roll to roll processing of a polymer solar cell: The different layers are coated onto a flexible substrate. Image courtesy Jens Wenzel Andreasen/DTU.

The sharp X-ray vision of DESY's research light source PETRA III paves the way for a new technique to produce cheap, flexible and versatile double solar cells.

The method developed by scientists from the Technical University of Denmark (DTU) in Roskilde can reliably produce efficient tandem plastic solar cells of many metres in length, as a team around senior researcher Jens W. Andreasen reports in the journal Advanced Energy Materials.

The scientists used a production process, where the different layers of a polymer (plastic) solar cell are coated from various solutions onto a flexible substrate.

This way, the solar cell can be produced fast and cheap in a roll-to-roll process and in almost any desired length - up to several kilometers long single solar cell modules have already been manufactured.

However, the energy harvesting efficiency of this type of solar cell is not very high. To increase the efficiency, a DTU team around Frederik C. Krebs stacked two such solar cells onto each other. Each of these absorbs a different part of the solar spectrum, so that the resulting tandem polymer solar cell converts more of the incoming sunlight into electric energy.

But the multilayer coating presents several new challenges, as Andreasen explained: "Lab studies have shown that already coated layers may be dissolved by the solvent from the following layer, causing complete failure of the solar cell."

To prevent redissolution of the first solar cell, the scientists added a carefully composed protective intermediate coating between the two solar cells. The protective coating contains a layer made of zinc oxide (ZnO) that is just 40 nanometres thick - about a thousand times thinner than a human hair.

To check shape and function of the protective coating and the other layers of the tandem solar cell, the scientists used the exceptionally sharp X-ray vision of DESY's research light source PETRA III that can reveal finest details. "The solar cell structure is very delicate, consisting of twelve individual layers altogether.

Imaging the complete structure is challenging," explained co-author Juliane Reinhardt from DESY's experimental station P06 where the investigations were made. "And the sample was just two by four microns in size."

Still, with the brilliant X-ray beam from PETRA III, the researchers could peer into the layer structure in fine detail, using a technique called 3D ptychography. This method reconstructs the three-dimensional shape and chemistry of a sample from the way it diffracts the incoming X-rays.

For a full 3D reconstruction a great number of overlapping X-ray diffraction images have to be recorded from all sides and angles. The advantage of ptychography is that it yields a higher resolution than would be possible with conventional X-ray imaging alone. And in contrast to electron microscopy, X-ray ptychography can also look deep inside the sample.

"With 3D ptychography, we were able to image the complete roll-to-roll coated tandem solar cell, showing, among other things, the integrity of the 40 nanometres thin zinc oxide layer in the protective coating that successfully preserved underlying layers from solution damage," said DESY scientist Gerald Falkenberg, head of the experimental station P06.

"These are the 3D ptychography measurements with the highest spatial resolution we have achieved so far. The results show that with the correct formulation of the intermediate layer, the underlying solar cell is protected from redissolution."

The investigation paves the way to a possible industrial application of the new technique. "In a complex multilayer device like a polymer tandem solar cell, the device may fail in multiple ways," Andreasen pointed out.

"What we were able to see with 3D ptychography was that the preparation of the substrate electrode combines the good conductivity of a coarsely structured silver electrode with the good film forming ability of a conducting polymer that infiltrates the silver electrode and forms a smooth surface for the coating of the subsequent layers."

This is what allows the coating of very thin layers, at very high speeds, still forming contiguous layers, without pinholes.

Looking into the complete structure can also provide valuable information for a possible optimization of the device and the production process.

"In principle we make the devices without knowing what the internal structure looks like in detail. But knowing the structure tells us which parameters we can modify, and which factors are important for the device architecture, for example the special type of substrate electrode, and the formulation of the intermediate layer," Andreasen explained.

"We were now able to verify that we can coat contiguous, homogeneous layers, roll-to-roll from solution, at speeds up to several meters per minute. We have shown that roll-to-roll processing of tandem solar cells is possible, with all of the layers roll-coated from solution, and that it is only possible using a specific formulation of the intermediate layer between the two sub-cells."

The resulting polymer tandem solar cell converts 2.67 per cent of the incoming sunlight into electric energy, which is way below the efficiency of conventional solar cells.

"The efficiency is low, compared to conventional solar cells, by a factor of 7 to 8, but one should consider that the production cost of this type of solar cell is several orders of magnitude lower than for conventional solar cells. This is the particular advantage of polymer solar cells," explained Andreasen. "Furthermore, this is the first example of a roll-to-roll coated tandem solar cell where the efficiency of the tandem device actually exceeds that of the individual sub-cell devices by themselves."

PETRA III produces extremely brilliant X-rays using fast electrons from a powerful particle accelerator. The particles are accelerated to nearly the speed of light and send down a magnetic slalom course. In each bend, the electrons emit tiny X-ray flashes that add up to a narrow and extremely bright X-ray beam.

Deutsches Elektronen-Synchrotron DESY is the leading German accelerator centre and one of the leading in the world. DESY is a member of the Helmholtz Association and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 per cent) and the German federal states of Hamburg and Brandenburg (10 per cent).

At its locations in Hamburg and Zeuthen near Berlin, DESY develops, builds and operates large particle accelerators, and uses them to investigate the structure of matter. DESY's combination of photon science and particle physics is unique in Europe.

"Enabling Flexible Polymer Tandem Solar Cells"; Henrik F. Dam et al.; "Advanced Energy Materials", 2014; DOI: 10.1002/aenm.201400736

.


Related Links
Deutsches Elektronen-Synchrotron
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





SOLAR DAILY
Sun-powered desalination for villages in India
Boston MA (SPX) Sep 09, 2014
Around the world, there is more salty groundwater than fresh, drinkable groundwater. For example, 60 percent of India is underlain by salty water - and much of that area is not served by an electric grid that could run conventional reverse-osmosis desalination plants. Now an analysis by MIT researchers shows that a different desalination technology called electrodialysis, powered by solar ... read more


SOLAR DAILY
Ethanol fireplaces: the underestimated risk

ACCESS II Confirms Jet Biofuel Burns Cleaner

Scientists create renewable fossil fuel alternative using bacteria

Scientists produce fuel from gut bacteria, sugar: study

SOLAR DAILY
Magal introducing RoboGuard security system in Israel

'Robo Brain' will teach robots everything from the Internet

Robonaut Gets New Legs as Trio Prepares for Homecoming

Russia's First Exoskeleton to Help Physically Impaired

SOLAR DAILY
Cutting fossil subsidies must to advance renewables: agency

Stealth wind turbines to become operational in France in 2015

EU calls for study of 2020 renewable energy targets

Go green and prosper, British government says

SOLAR DAILY
Director sees road movie a fit for car culture-gripped China

Tesla chief says self-driving cars just around corner

Ride-sharing could cut cabs' road time by 30 percent

Sweden court accepts receivership for Saab carmaker

SOLAR DAILY
Clean coal key to combating climate change: Rio Tinto

Tesla picks Nevada for $5 bln battery plant

Changing temperature powers sensors in hard-to-reach places

Ultrasensitive Biosensor from Molybdenite Semiconductor Outshines Graphene

SOLAR DAILY
Japan's first female industry chief visits Fukushima plant

Japan places political star at heart of nuclear revival

Australia, India sign long-awaited civil nuclear deal

DSIT Solutions of Israel helps with nuclear power plant security

SOLAR DAILY
IRENA: Outdated thinking curbing green energy momentum

Zimbabwe launches $500-mln power units to ease energy woes

Existing power plants will spew 300 billion more tons of carbon dioxide during use

Yale Journal Explores Advances In Sustainable Manufacturing

SOLAR DAILY
Brazil cracks 'biggest' Amazon deforestation gang

Brazil arrests 8 in Amazon deforestation swoop

World's primary forests on the brink

New analysis links tree height to climate




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.