Subscribe to our free daily newsletters
  Solar Energy News  

Subscribe to our free daily newsletters

X-rays reveal how a solar cell gets its silver stripes
by Staff Writers
Menlo Park CA (SPX) Apr 07, 2016

This illustration shows how silver contacts form on silicon solar cells. a) Each contact starts as a glass paste that contains small silver particles (black) and lead oxide. As the temperature rises quickly during manufacturing, the glass paste melts, releasing lead ions that etch away the silicon's anti-reflective coating. b) At higher temperatures, silver ions migrate through the molten glass and deposit on the underlying silicon. c) Once cooled, the finished contact contains solid silver blobs that have been squeezed together by heat; tiny silver particles within the paste, which is now solid glass; and solid silver on the silicon surface. All three types of silver are needed to make the contact effective. Image courtesy SLAC National Accelerator Laboratory. For a larger version of this image please go here.

The silver electrical contacts that carry electricity out of about 90 percent of the solar modules on the market are also one of their most expensive parts. Now scientists from two Department of Energy national laboratories have used X-rays to observe exactly how those contacts form during manufacturing.

The results, reported in Nature Communications, are an important step toward finding cheaper alternatives to silver that don't require toxic lead for processing.

"Industry would like to get rid of both silver and lead in this process," said Mike Toney, a distinguished staff scientist at SLAC National Accelerator Laboratory and one of the lead authors of the paper. "One of the goals of this research is to figure out how the contacts are made and use this knowledge to come up with ways to eliminate silver and lead."

Opening a Small Window on an Old Process
The contacts are produced by printing a paste made of silver particles, glass and lead oxide onto the solar cell's surface. The cell travels on a belt through a furnace, which heats it to about 800 degrees Celsius - 1,500 degrees Fahrenheit - in less than a minute. When the cell comes out the other end and cools, the lines of paste have formed electrical contacts with the cell.

"Although the process has been around for a long time, it's been impossible to see how the contacts form until now because it happens very fast," Toney said. "Scientists have been debating how this reaction proceeds for many years."

To settle the debate, researchers from SLAC and the National Renewable Energy Laboratory (NREL) in Colorado built a simplified version of the industrial furnace at SLAC's Stanford Synchrotron Radiation Lightsource, a DOE Office of Science User Facility. They put sample solar cells into the furnace, quickly heated the samples to the high temperatures used in manufacturing and monitored changes in the chemistry of the contact with an X-ray beam shining into the chamber through a small window.

A Tool for Basic Research and Industry
The results showed that lead oxide plays a key role in forming the contact, etching away the solar cell's antireflective coating so silver can move through, pool and eventually harden in small pits on the silicon surface. Once cooled, the finished contact contains solid silver blobs that have been squeezed together by heat; tiny silver particles in a layer of solid glass; and solid silver on the silicon surface. All three types of silver are needed to make the contact effective.

"I won't say we have the full story yet, but this is the first time we actually got some insight into what's happening," said Maikel van Hest, a materials scientist at NREL who led the research. "Prior to this study we were only able to look at the contact before and after heat processing; what happened in between was like a black box. But now we can actually make measurements as the contacts form. This tool will have great impact in the photovoltaic industry as well as in basic research."

NREL's Jeremy Fields and SLAC's Mohammed Imteyaz Ahmad were first authors of the paper and played leading roles in carrying out the experiments. Other scientists involved in the research were NREL's Philip Parilla and SLAC's Vanessa Pool, Jiafan Yu and Douglas Van Campen. The research was funded by the DOE's SunShot Initiative, which aims to make solar energy cost-competitive with other forms of electricity by the end of the decade.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
DOE/SLAC National Accelerator Laboratory
All About Solar Energy at

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Graphene layer lets solar panels to generate energy in rain
Qingdao, China (UPI) Apr 6, 2016
Engineers and materials scientists have made solar panels increasingly efficient, but the technology still requires the cooperation of the weather. Currently, slow-moving rain fronts spell bad news for solar power generation - but not for a new prototype solar cell developed by a team of Chinese scientists. By coating a solar cell in a thin layer of graphene, researchers have empowered ... read more

Penn chemists lay groundwork for countless new, cleaner uses of methane

Dung, offal make clean gas at Costa Rica slaughterhouse

ORNL invents tougher plastic with 50 percent renewable content

The flexible way to greater energy yield

Gestures improve communication - even with robots

Robot Technology Set to Invade Earth

Moving microswimmers with tiny swirling flows

No plans for killer US military robots... yet

Scotland generated most of its electricity in 2015 through renewables

RWE making bold moves in Scottish renewables

Wind energy growing, IEA report finds

Momentum building behind U.S. wind energy

VW managers refuse to forego bonuses: report

Self-drive trucks 'future of Europe's busy highways'

Tesla Model 3 orders hit 325,000

Tesla unveils cheaper model aimed at mass market

For rechargeable batteries that crush the competition, crush this material

New tools created to debug intermittently powered energy-harvesting devices

Creation of Jupiter interior, a step towards room temp superconductivity

Argonne continues to pave way for improved battery performance testing

South Africa's nuclear procurement process stalled indefinitely

Japan's only working nuclear reactors can stay online

UK-US nuke waste deal to help fight cancer

Rosatom to offer seawater desalination tech to Latin America

Study shows best way to reduce energy consumption

US tech giants file brief in favor of Obama 'clean power' plan

Four killed at anti-China power plant protest in Bangladesh

Human impact forms 'striking new pattern' in Earth's global energy flow

Massive deforestation found in Brazil's Cerrado

Maximum sentences for killers of Costa Rica environmentalist

Massive deforestation discovered in Brazil's Cerrado region

Desert mangroves are major source of carbon storage

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement