Subscribe free to our newsletters via your
. Solar Energy News .




NANO TECH
A Crystal Wedding in the Nanocosmos
by Staff Writers
Vienna, Austria (SPX) Jul 28, 2014


Indium arsenide (green-cyan) is perfectly integrated into the silicon nanowire (blue). (Energy-dispersive X-ray spectroscopy). Image courtesy HZDR/Prucnal.

Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Vienna University of Technology and the Maria Curie-Sklodowska University Lublin have succeeded in embedding nearly perfect semiconductor crystals into a silicon nanowire.

With this new method of producing hybrid nanowires, very fast and multi-functional processing units can be accommodated on a single chip in the future. The research results will be published in the journal Nano Research.

Nano-optoelectronics are considered the cornerstone of future chip technology, but the research faces major challenges: on the one hand, electronic components must be accommodated into smaller and smaller spaces.

On the other hand, what are known as compound semiconductors are to be embedded into conventional materials. In contrast to silicon, many of such semiconductors with extremely high electron mobility could improve performance of the most modern silicon-based CMOS technology.

Scientists from the HZDR, Vienna University of Technology and Maria Curie-Sklodowska University Lublin have now come a step closer to both these targets: they integrated compound semiconductor crystals made of indium arsenide (InAs) into silicon nanowires, which are ideally suited for constructing increasingly compact chips.

This integration of crystals was the greatest obstacle for such "hetero-nanowires" until now: beyond the nanometer range, crystal lattice mismatch always led to numerous defects. The researchers have now managed a near-perfect production and embedding of the InAs crystals into the nanowires for the first time.

Implanted atoms form crystals in the liquid-phase
In order to carry out this process, ion beam synthesis and heat treatment with xenon flash-lamps were used, two technologies in which the Ion Beam Center of the HZDR has held experience for many years. The scientists initially needed to introduce a determined number of atoms precisely into the wires using ion implantation.

They then carried out the flash-lamp annealing of the silicon wires in their liquid-phase within a matter of only twenty milliseconds.

"A silicon oxide shell, measuring merely fifteen-nanometers-thick, maintains the form of the liquid nanowire," explains HZDR scientist Dr. Slawomir Prucnal, "while the implanted atoms form the indium-arsenide crystals."

Dr. Wolfgang Skorupa, the head of the research group adds: "The atoms diffuse in the liquid-silicon-phase so rapidly that within milliseconds they form flawless mono-crystals delineated from their surroundings with nearly perfect interfaces."

In the next step, the scientists want to implement different compound semiconductors into Silicon nanowires and also optimize the size and distribution of the crystals.

Publication: Prucnal, S. et al. (just accepted, 7/2014). III-V semiconductor nanocrystal formation in silicon nanowires via liquid-phase epitaxy. Nano Research. DOI 10.1007/s12274-014-0536-6

.


Related Links
Helmholtz-Zentrum Dresden-Rossendorf
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





NANO TECH
Rice nanophotonics experts create powerful molecular sensor
Houston TX (SPX) Jul 16, 2014
Nanophotonics experts at Rice University have created a unique sensor that amplifies the optical signature of molecules by about 100 billion times. Newly published tests found the device could accurately identify the composition and structure of individual molecules containing fewer than 20 atoms. The new imaging method, which is described this week in the journal Nature Communications, us ... read more


NANO TECH
Spinach could lead to alternative energy more powerful than Popeye

Biofuels benefit energy security, Secretary Moniz says

German laws make biogas a bad bet, RWE Innogy says

U.S. looking for ways to make biofuels cheaper

NANO TECH
This time for the PLA: Chinese army shows off dancing robots

Wake up, robot

Medical advances turn science fiction into science fact

Human or robot? Hit Swedish TV series explores shrinking divide

NANO TECH
Fires are a major cause of wind farm failure

Portuguese consortium to spend $300 million on wind

Marine life thrives around offshore wind farms

DNV GL Increase Quality Of Rotor Blades Made In China

NANO TECH
Ride-share service Lyft reaches deal with New York

Really smart cars are ready to take the wheel

Using LED lighting to reduce streetlight glare

Cheap and easy software provides highly accurate real-time data on traffic

NANO TECH
Improving the cost and efficiency of renewable energy storage

Rutgers Chemists Develop Clean-Burning Hydrogen Fuel

3-D nanostructure could benefit gas storage

Labs characterize carbon for batteries

NANO TECH
China, Canada to build two nuclear reactors in Romania

Fukushima Accident Underscores Need to Act on Nuclear Plant Hazards

A noble gas cage

Report finds gaps in US nuclear disaster plans

NANO TECH
EU sets new energy savings target at 30%

Canada lobs economic shot across Russian energy bow

U.S. ranks 13th among 16 economies in energy efficiency

Germany most energy efficient nation: study

NANO TECH
Borneo deforested 30 percent over past 40 years

Reducing Travel Assisted Firewood Insect Spread

Walmart store planned for endangered Florida forest

Hunting gives deer-damaged forests a shot at recovery




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.