Solar Energy News  
CARBON WORLDS
A full-filling approach to making nanotubes of consistent quality
by Staff Writers
Washington DC (SPX) Jul 19, 2016


illustration only

Just as many of us might be resigned to clogged salt shakers or rush-hour traffic, those working to exploit the special properties of carbon nanotubes have typically shrugged their shoulders when these tiniest of cylinders fill with water during processing.

But for nanotube practitioners who have reached their Popeye threshold and "can't stands no more," the National Institute of Standards and Technology (NIST) has devised a cheap, quick and effective strategy that reliably enhances the quality and consistency of the materials - important for using them effectively in applications such as new computing technologies.

To prevent filling of the cores of single-wall carbon nanotubes with water or other detrimental substances, the NIST researchers advise intentionally prefilling them with a desired chemical of known properties. Taking this step before separating and dispersing the materials, usually done in water, yields a consistently uniform collection of nanotubes. In quantity and quality, the results are superior to water-filled nanotubes, especially for optical applications such as sensors and photodetectors.

The approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes - rolled up sheets of carbon atoms arranged like chicken wire or honey combs - with improved or new properties.

"This approach is so easy, inexpensive and broadly useful that I can't think of a reason not to use it," said NIST chemical engineer Jeffrey Fagan.

In their proof-of-concept experiments, the NIST team inserted more than 20 different compounds into an assortment of single-wall carbon nanotubes with an interior diameter that ranged from more than 2 down to about 0.5 nanometers. Led by visiting researcher Jochen Campo, the scientists tested their strategy by using hydrocarbons called alkanes as fillers.

The alkanes, which include such familiar compounds as propane and butane, served to render the nanotube interiors unreactive. In other words, the alkane-filled nanotubes behaved almost as if they were empty - precisely the goal of Campo, Fagan and colleagues.

Compared with nanotubes filled with water and possibly ions, acids and other unwanted chemicals encountered during processing, empty nanotubes possess far superior properties. For example, when stimulated by light, empty carbon nanotubes fluoresce far brighter and with sharper signals.

Yet, "spontaneous ingestion" of water or other solvents by the nanotubes during processing is an "endemic but often neglected phenomenon with strong implications for the development of nanotube applications," the NIST team wrote in a recent article in Nanoscale Horizons.

Perhaps because of the additional cost and effort required to filter out and gather nanotubes, researchers tend to tolerate mixed batches of unfilled (empty) and mostly filled single-wall carbon nanotubes. Separating unfilled nanotubes from these mixtures requires expensive ultracentrifuge equipment and, even then, the yield is only about 10 percent, Campo estimates.

"If your goal is to use nanotubes for electronic circuits, for example, or for fluorescent anti-cancer image contrast agents, then you require much greater quantities of materials of consistent composition and quality," Campo explained, who was exploring these applications while doing postdoctoral research at the University of Antwerp. "This particular need inspired development of the new prefilling method by asking the question, can we put some passive chemical into the nanotube instead to keep the water out."

From the very first simple experiments, the answer was yes. And the benefits can be significant. In fluorescence experiments, alkane-filled nanotubes emitted signals two to three times stronger than those emitted by water-filled nanotubes. Performance approached that of empty nanotubes - the gold standard for these comparisons.

As important, the NIST-developed prefilling strategy is controllable, versatile and easily incorporated into existing methods for processing single-wall carbon nanotubes, according to the researchers.

Article: J. Campo, Y. Piao, S. Lam, C.M. Stafford, J.K. Streit, J.R. Simpson, A.R. Hight Walker and J.A. Fagan. 2016. Enhancing single-wall carbon nanotube properties through controlled endohedral filling.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National Institute of Standards and Technology (NIST)
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CARBON WORLDS
Germs add ripples to make 'groovy' graphene
Chicago IL (SPX) Jul 13, 2016
Graphene, a two-dimensional wonder-material composed of a single layer of carbon atoms linked in a hexagonal chicken-wire pattern, has attracted intense interest for its phenomenal ability to conduct electricity. Now University of Illinois at Chicago researchers have used rod-shaped bacteria - precisely aligned in an electric field, then vacuum-shrunk under a graphene sheet - to introduce nanosc ... read more


CARBON WORLDS
Olive oil waste yields molecules useful in chemical and food industries

One reaction, two results, zero waste

Neural networks to obtain synthetic petroleum

From climate killer to fuels and polymers

CARBON WORLDS
Robot would assemble modular telescope - in space

The debut of a robotic stingray, powered by light-activated rat cells

On the path toward molecular robots

Chinese firm Midea gets over 50% of Germany's Kuka

CARBON WORLDS
Offshore wind the next big thing, industry group says

France's EDF buys Chinese wind energy firm

Scotland commits $26M for low-carbon economy

More wind power added to French grid

CARBON WORLDS
Partially automated cars provide enough benefits to warrant widespread adoption

Tesla won't disable Autopilot despite accidents

California rejects VW plan to fix 3-liter diesel cars

GM sees self-driving cars as gradual rollout

CARBON WORLDS
Organic molecules could store energy in flow batteries

Electricity generated with water, salt and an ultra thin membrane

Atomic bits despite zero-point energy

New ferromagnetic superconductors

CARBON WORLDS
China 'may build nuclear plants' in South China Sea

Fukushima reactor makers not liable: Japan court

Iran says to cooperate with France on nuclear project

Indian NPP Second Unit May Start Commercial Operations in November

CARBON WORLDS
Sweden's 100 percent carbon-free emissions challenge

Norway MPs vote to go carbon neutral by 2030

Algorithm could help detect and reduce power grid faults

It pays to increase energy consumption

CARBON WORLDS
Australian mangrove die-off blamed on climate change

Agroforestry helps farmers branch out

Drought stalls tree growth and shuts down Amazon carbon sink

Understanding forest fire history can help keep forests healthy









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.