Solar Energy News  
TECH SPACE
A glimpse into the future
by Staff Writers
Santa Barbara CA (SPX) Feb 14, 2019

file illustration only

Ten years into the future. That's about how far UC Santa Barbara electrical and computer engineering professor John Bowers and his research team are reaching with the recent development of their mode-locked quantum dot lasers on silicon. It's technology that not only can massively increase the data transmission capacity of data centers, telecommunications companies and network hardware products to come, but do so with high stability, low noise and the energy efficiency of silicon photonics.

"The level of data traffic in the world is going up very, very fast," said Bowers, co-author of a paper on the new technology in the journal Optica. Generally speaking, he explained, the transmission and data capacity of state-of-the-art telecommunications infrastructure must double roughly every two years to sustain high levels of performance. That means that even now, technology companies such as Intel and Cisco have to set their sights on the hardware of 2024 and beyond to stay competitive.

Enter the Bowers Group's high-channel-count, 20 gigahertz, passively mode-locked quantum dot laser, directly grown - for the first time, to the group's knowledge - on a silicon substrate. With a proven 4.1 terabit-per-second transmission capacity, it leaps an estimated full decade ahead from today's best commercial standard for data transmission, which is currently reaching for 400 gigabits per second on Ethernet.

The technology is the latest high-performance candidate in an established technique called wavelength-division-multiplexing (WDM), which transmits numerous parallel signals over a single optical fiber using different wavelengths (colors). It has made possible the streaming and rapid data transfer we have come to rely on for our communications, entertainment and commerce.

The Bowers Group's new technology takes advantage of several advances in telecommunications, photonics and materials with its quantum dot laser - a tiny, micron-sized light source - that can emit a broad range of light wavelengths over which data can be transmitted.

"We want more coherent wavelengths generated in one cheap light source," said Songtao Liu, a postdoctoral researcher in the Bowers Group and lead author of the paper. "Quantum dots can offer you wide gain spectrum, and that's why we can achieve a lot of channels." Their quantum dot laser produces 64 channels, spaced at 20 GHz, and can be utilized as a transmitter to boost the system capacity.

The laser is passively 'mode-locked' - a technique that generates coherent optical 'combs' with fixed-channel spacing - to prevent noise from wavelength competition in the laser cavity and stabilize data transmission.

This technology represents a significant advance in the field of silicon electronic and photonic integrated circuits, in which the primary goal is to create components that use light (photons) and waveguides - unparalleled for data capacity and transmission speed as well as energy efficiency - alongside and even instead of electrons and wires.

Silicon is a good material for the quality of light it can guide and preserve, and for the ease and low cost of its large-scale manufacture. However, it's not so good for generating light.

"If you want to generate light efficiently, you want a direct band-gap semiconductor," said Liu, referring to the ideal electronic structural property for light-emitting solids.

"Silicon is an indirect band-gap semiconductor." The Bowers Group's quantum dot laser, grown on silicon molecule-by-molecule at UC Santa Barbara's nanofabrication facilities, is a structure that takes advantage of the electronic properties of several semiconductor materials for performance and function (including their direct band-gaps), in addition to silicon's own well-known optical and manufacturing benefits.

This quantum dot laser, and components like it, are expected to become the norm in telecommunications and data processing, as technology companies seek ways to improve their data capacity and transmission speeds.

"Data centers are now buying large amounts of silicon photonic transceivers," Bowers pointed out. "And it went from nothing two years ago."

Since Bowers a decade ago demonstrated the world's first hybrid silicon laser (an effort in conjunction with Intel), the silicon photonics world has continued to create higher efficiency, higher performance technology while maintaining as small a footprint as possible, with an eye on mass production. The quantum dot laser on silicon, Bowers and Liu say, is state-of-the-art technology that delivers the superior performance that will be sought for future devices.

"We're shooting far out there," said Bowers, who holds the Fred Kavli Chair in Nanotechnology, "which is what university research should be doing."


Related Links
University of California - Santa Barbara
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Will moving to the commercial cloud leave some data users behind?
Atlanta GA (SPX) Feb 08, 2019
As part of their missions, federal agencies generate or collect massive volumes of data from such sources as earth-observing satellites, sensor networks and genomics research. Much of that information is useful to commercial and academic institutions, which now can usually access this publicly-generated data from agency servers at no charge. But as the volume of data continues to expand, many agencies are considering the use of commercial cloud services to help store and make it available to users ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
New insights into radial expansion of plants can boost biomass production

UD researchers synthesize renewable oils for use in lubricants

Scientists discover a better way to make plastics out of sulfur

Strategies for growing biomass for fuel can have multiple benefits

TECH SPACE
Psychology: Robot saved, people take the hit

Trumps orders government to prioritize artificial intelligence

Pope talks AI ethics with Microsoft head Smith

Programming autonomous machines ahead of time promotes selfless decision-making

TECH SPACE
Sulzer Schmid's new technology platform slashes cost of drone-based rotor blade inspections

Major companies, cities buying into Texas' green energy boom

EON achieves successful commercial operation and tax equity financing for Stella wind farm

Lidar lights up wind opportunities for Tilt in Australia

TECH SPACE
Teaching self-driving cars to predict pedestrian movement

Risk Analysis releases special issue on social science of automated cars

Giving keener 'electric eyesight' to autonomous vehicles

UN eyes rule for automatic emergency braking systems in new cars

TECH SPACE
Upcycling plastic bags into battery parts

Improving geothermal HVAC systems with mathematics

Mana Monitoring Sets Sights on National Smart Grid Opportunities for 2019

Better red than dread: Barrier keeps batteries safe

TECH SPACE
Storage of nuclear waste a 'global crisis': report

Strategic French civil nuclear industry contract: Framatome is a committed actor of the sector in France and abroad

Framatome receives $49 million grant to accelerate enhanced accident tolerant fuel development

Framatome companies and Joint Ventures in China are renamed

TECH SPACE
S.Africa imposes severe power cuts ahead of election

To conserve energy, AI clears up cloudy forecasts

Keeping the lights on during extreme cold snaps takes investments and upgrades

US charges Chinese national for stealing energy company secrets

TECH SPACE
US Senate votes to expand nationals parks, protected lands

The art and science of Japan's cherry blossom forecast

How does the Amazon rain forest cope with drought?

Innovative GEDI Instrument Now Gathering Forest Data









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.