Solar Energy News  
SOLAR DAILY
A new approach for the fast estimation of the solar energy potential in urban environments
by Staff Writers
Delft, Netherlands (SPX) Feb 05, 2019

The work carried out at the PVMD group can be used to calculate the solar photovoltaic energy potential of buildings in complex urban landscapes. The image shows results of the model applied to selected facades and roofs of buildings in the city of Boston, Mass. Roofs are painted with brighter colors than facades which indicates a higher energy potential. Base 3D model by Boston Planning and Development Agency is licensed under CC BY 3.0.

TU Delft researchers have developed a new approach for calculating fast and accurate the solar energy potential of surfaces in the urban environment. The new approach can significantly help architects and urban planners to incorporate photovoltaic (solar power) technology in their designs. The findings were presented on Monday 4 February in Nature Energy.

Buildings, trees and other structures in urban areas cause shading of solar modules, which strongly affects the performance of a PV system. Accurate assessment of this performance, and the related price/performance of PV systems, will facilitate their integration in the urban environment.

Several tools are available for simulating the energy yield of PV systems. These tools are based on mathematical models that determine the irradiance incident on solar modules. By repeating the calculation of the incident irradiance throughout the year, the tools deliver an annual irradiation received by the modules.

However, it is not easy to determine accurately how much electricity a PV system generates in an urban environment. Current simulations become computationally highly demanding, as the dynamic shading of surrounding objects caused by the annual movement of the sun has to be taken into account.

Two parameters
A new approach simplifies the calculation and enables the user to carry out a quick assessment of the solar energy potential for large urban areas whilst keeping high accuracy. It is based on a correlation between a skyline profile and the annual irradiation received at a particular urban spot. This method is explained and validated in a study published in Nature Energy journal.

The study demonstrates that the total annual solar irradiation received by a selected surface in an urban environment can be quantified using two parameters that are derived from the skyline profile: the sky view factor and the sun coverage factor.

While the first parameter is used to estimate the irradiation from the diffuse sunlight component, the second one is indicative for the irradiation from the direct sunlight component. These two parameters can be easily and quickly obtained from the skyline profile. The study shows that the use of these two parameters significantly reduces the computational complexity of the problem.

Software toolbox
Andres Calcabrini, PhD student in the department of Electrical Sustainable Energy, developed the new approach under supervision of Dr Olindo Isabella and Professor Miro Zeman. The Photovoltaic Materials and Devices (PVMD) group has already integrated the approach in a software toolbox that can accurately calculate the energy yield of PV systems at any location.

Olindo Isabella, head of the PVMD group: "Our fast approach integrated in software tools for calculating the solar energy potential can significantly facilitate design and distribution of buildings with integrated PV systems in urban planning frameworks. It will also help investors to take decisions on integrating PV systems in buildings and other urban locations."

This research has been carried out as a part of the Solar Urban programme of Delft University of Technology.

Research Report: 'A simplified skyline-based method for estimating the annual solar energy potential in urban environments'


Related Links
Delft University of Technology
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Harnessing light for a solar-powered chemical industry
Melbourne, Australia (SPX) Feb 01, 2019
New technology that harnesses sunlight to drive chemical reactions is paving the way for a more sustainable chemical manufacturing industry, one of the globe's biggest energy users. RMIT University researchers have developed a nano-enhanced material that can capture an incredible 99% of light and convert it to power chemical reactions. As well as reducing the environmental impact of chemical manufacturing, the innovation could one day be used to deliver technologies like better infrared came ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
British air base ready to run on green energy from biomass

Strategies for growing biomass for fuel can have multiple benefits

A powerful catalyst for electrolysis of water that could help harness renewable energy

From toilet to brickyard: Recycling biosolids to make sustainable bricks

SOLAR DAILY
Engineers program marine robots to take calculated risks

Automation to hit most jobs, but overall impact 'muted': study

The first tendril-like soft robot able to climb

Amazon rolls out 'Scout' delivery robots

SOLAR DAILY
Major companies, cities buying into Texas' green energy boom

EON achieves successful commercial operation and tax equity financing for Stella wind farm

Lidar lights up wind opportunities for Tilt in Australia

US Wind Inc. agrees to sell its New Jersey offshore lease to EDF Renewables North America

SOLAR DAILY
Tesla posts higher earnings but still falls short

Mean streets: Self-driving cars will 'cruise' to avoid paying to park

Chinese engineer charged in theft of Apple car secrets

Apple puts brakes on car team but keeps eye on road

SOLAR DAILY
Researchers find a way to boost sodium-ion battery performance

New method yields higher transition temperature in superconducting materials

Superconductors: Resistance is futile

Novel device may rapidly control plasma disruptions in a fusion facility

SOLAR DAILY
Storage of nuclear waste a 'global crisis': report

Strategic French civil nuclear industry contract: Framatome is a committed actor of the sector in France and abroad

Framatome receives $49 million grant to accelerate enhanced accident tolerant fuel development

Framatome companies and Joint Ventures in China are renamed

SOLAR DAILY
Keeping the lights on during extreme cold snaps takes investments and upgrades

US charges Chinese national for stealing energy company secrets

Making the world hotter: India's expected AC explosion

EU court backs Dyson on vacuum cleaner energy tests

SOLAR DAILY
'Rocket C': Space Industry Source Unveils Tech Details of Russia Lunar Mission

Abandoned fields turn into forests five times faster than thought

Inequality fuels deforestation in Latin American, research shows

How much rainforest do birds need?









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.