Solar Energy News  
SOLAR DAILY
A new low-cost solar technology for environmental cooling
by Staff Writers
Torino, Italy (SPX) Mar 30, 2020

Fig. 1 Layout, schematics, and working principle of the passive cooling device. (A) Schematic of the working principle of a generic salinity-driven cooler: The salinity difference between two inlet solutions generates a net vapor flux from the evaporating (YE) to the condensing (YC) layers. These evaporation-condensation processes in multiple stages allow the removal of heat from the lower-temperature chamber and the transfer of heat into the higher-temperature external environment. This process eventually leads to a by-product, being the dilution of the solution in the condensers, which is here represented as an outlet flow with an intermediate salinity (Y) with respect to the inlet solution at YC. (B) Schematic layout of the four-stage modular passive cooler discussed in this work. The actual experimental setup is reported in fig. S1. (C) Working principle of one stage of the passive cooler: Two solutions with different salinities are separated from each other by a hydrophobic membrane. The salt concentration difference creates an activity gradient (green triangle), which leads to a net vapor flux. The transfer of enthalpy of evaporation establishes a temperature gradient between the two solutions (red triangle), which is opposed to the gradient created by the activity difference. (D) Graphical representation of the assembly of one stage of the cooling device. A 3D-printed plastic frame (2, red) contains the cavity that forms the condenser, which is sealed by an aluminum plate cover (1, gray) and a hydrophobic membrane (3, brown). The hydrophilic layer (4, yellow), being the evaporator, is placed between the membrane and another aluminum plate.

Space cooling and heating is a common need in most inhabited areas. In Europe, the energy consumed for air conditioning is rising, and the situation could get worse in the near future due to the temperature increase in different regions worldwide. The increasing cooling need in buildings especially during the summer season is satisfied by the popular air conditioners, which often make use of refrigerants with high environmental impact and also lead to high electricity consumption. So, how can we reduce the energy demand for building cooling?

A new study comes from a research group based at the Politecnico di Torino (SMaLL) and the National Institute of Metrological Research (INRiM), who has proposed a device capable of generating a cooling load without the use of electricity: the research has been published in Science Advances. Like more traditional cooling devices, this new technology also exploits the evaporation of a liquid.

However, the key idea proposed by the Turin researchers is to use simple water and common salt instead of chemicals that are potentially harmful for the environment. The environmental impact of the new device is also reduced because it is based on passive phenomena, i.e. spontaneous processes such as capillarity or evaporation, instead of on pumps and compressors that require energy and maintenance.

"Cooling by water evaporation has always been known. As an example, Nature makes use of sweat evaporation from the skin to cool down our body. However, this strategy is effective as long as air is not saturated with water vapour. Our idea was to come up with a low-cost technology capable to maximize the cooling effect regardless of the external water vapour conditions. Instead of being exposed to air, pure water is in contact with an impermeable membrane that keeps separated from a highly concentrated salty solution.

The membrane can be imagined as a porous sieve with pore size in the order of one millionth of a meter. Owing to its water-repellent properties, our membrane liquid water does not pass through the membrane, whereas its vapour does.

In this way, the fresh and salt water do not mix, while a constant water vapour flux occurs from one end of the membrane to the other. As a result, pure water gets cooled, with this effect being further amplified thanks to the presence of different evaporation stages. Clearly, the salty water concentration will constantly decrease and the cooling effect will diminish over time; however, the difference in salinity between the two solutions can be continuously - and sustainably - restored using solar energy, as also demonstrated in another recent study from our group", explains Matteo Alberghini, PhD student of the Energy Department of the Politecnico di Torino and first author of the research.

The interesting feature of the suggested device consists in its modular design made of cooling units, a few centimetres thick each, that can be stacked in series to increase the cooling effect in series, as happens with common batteries. In this way it is possible to finely tune the cooling power according to individual needs, possibly reaching cooling capacity comparable to those typically necessary for domestic use.

Furthermore, water and salt do not need pumps or other auxiliaries to be transported within the device. On the contrary, it "moves" spontaneously thanks to capillary effects of some components which, like in kitchen paper, are capable of absorbing and transporting water also against gravity.

"Other technologies for passive cooling are also being tested in various labs and research centres worldwide, such as those based on infrared heat dissipation into the outer space - also known as radiative passive cooling. Those approaches, although promising and suitable for some applications, also present major limitations: the principle on which they are based may be ineffective in tropical climates and in general on very humid days, when, however, the need for conditioning would still be high; moreover, there is a theoretical limit for the maximum cooling power.

Our passive prototype, based instead on evaporative cooling between two aqueous solutions with different salinities, could overcome this limit, creating a useful effect independent of external humidity. Moreover, we could obtain an even higher cooling capacity in the future by increasing the concentration of the saline solution or by resorting to a more sophisticated modular design of the device" commented the researchers.

Also due to the simplicity of the device assembly and the required materials, a rather low production cost can be envisioned, in the order of a few euros for each cooling stage. As such, the device could be ideal for installations in rural areas, where the possible lack of well-trained technicians can make operation and maintenance of traditional cooling systems difficult.

Interesting applications can also be envisioned in regions with large availability in water with high saline concentration, such as coastal regions in the vicinity of large desalination plants or nearby salt marshes and salt mines.

As of now, the technology is not yet ready for an immediate commercial exploitation, and further developments (also subject to future funding or industrial partnerships) are necessary. In perspective, this technology could be used in combination with existing and more traditional cooling systems for effectively implementing energy saving strategies.

Research Reports: "Multistage and passive cooling process driven by salinity difference" and "Passive solar high-yield seawater desalination by modular and low-cost distillation"

Related Links
Politecnico Di Torino
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Perovskite solar cells made of peppermint oil and walnut aroma food additives, preventing lead leakage
Pohang, South Korea (SPX) Feb 27, 2020
Solar energy that reaches the Earth is about 125 million gigawatt (Gw). When this solar energy generated for a year is converted into oil, it is 100 trillion ton which is ten thousand times more than the amount of oil energy the world uses in a year. So, it is no surprising when one of the coffee commercial ads said, "The sunlight reaching the Earth for 30 seconds is enough for the entire world to use energy for 48 hours." Converting this solar energy into electrical energy is solar cell energy. Recentl ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
A novel biofuel system for hydrogen production from biomass

Recovering phosphorus from corn ethanol production can help reduce groundwater pollution

Deceptively simple process could boost plastics recycling

Scientists call for more sustainable palm oil practices

SOLAR DAILY
Stanford engineers create shape-changing, free-roaming soft robot

Thai hospitals deploy 'ninja robots' to aid virus battle

Soft robot, unplugged

Help NASA design a robot to dig on the Moon

SOLAR DAILY
Opportunity blows for offshore wind in China

Alphabet cuts cord on power-generating kite business

Iberdrola will build its next wind farm in Spain with the most powerful wind turbine

UK looks to offshore wind for green energy transition

SOLAR DAILY
Volvo Cars halts Europe, US production

Tesla resumes work on German plant after court ruling

Joint Japanese-German research project investigates networked and automated driving

Volvo Cars halts Europe, US productio

SOLAR DAILY
Converting waste heat into electricity to power billions of sensors

Tiny double accelerator recycles energy

Fish scales could make wearable electronics more sustainable

Engineers develop supercapacitor to power wearable electronic

SOLAR DAILY
Framatome opens new research and operations center and expands Intercontrole in Cadarache, France

Protests as Moscow moves to build road on radioactive dump

Atomic fingerprint identifies emission sources of uranium

US military plans portable mini nuclear power plants

SOLAR DAILY
Brussels not dropping Green Deal despite virus

Czech PM urges EU to shelve Green Deal amid virus

The impact of energy development on bird populations

Brexit and Its Impact on Green Energy Projects

SOLAR DAILY
Bushfires burned a fifth of Australia's forest: study

Close to tipping point, Amazon could collapse in 50 years

Protecting flood-controlling mangrove forests pays for itself

Burned area trends in the Amazon similar to previous years









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.