Solar Energy News
TIME AND SPACE
A new possible explanation for the Hubble tension
(blue; the yellow dots represent individual galaxies). The Milky Way (green) lies in an area with little matter. The galaxies in the bubble move in the direction of the higher matter densities (red arrows). The universe therefore appears to be expanding faster inside the bubble.
A new possible explanation for the Hubble tension
by Staff Writers
Bonn, Germany (SPX) Dec 04, 2023

The universe is expanding. How fast it does so is described by the so-called Hubble-Lemaitre constant. But there is a dispute about how big this constant actually is: Different measurement methods provide contradictory values. This so-called "Hubble tension" poses a puzzle for cosmologists. Researchers from the Universities of Bonn and St. Andrews are now proposing a new solution: Using an alternative theory of gravity, the discrepancy in the measured values can be easily explained - the Hubble tension disappears. The study has now been published in the Monthly Notices of the Royal Astronomical Society (MNRAS).

The expansion of the universe causes the galaxies to move away from each other. The speed at which they do this is proportional to the distance between them. For instance, if galaxy A is twice as far away from Earth as galaxy B, its distance from us also grows twice as fast. The US astronomer Edwin Hubble was one of the first to recognize this connection.

In order to calculate how fast two galaxies are moving away from each other, it is therefore necessary to know how far apart they are. However, this also requires a constant by which this distance must be multiplied. This is the so-called Hubble-Lemaitre constant, a fundamental parameter in cosmology. Its value can be determined, for example, by looking at the very distant regions of the universe. This gives a speed of almost 244,000 kilometers per hour per megaparsec distance (one megaparsec is just over three million light years).

244.000 kilometers per hour per megaparsec - or 264,000?
"But you can also look at celestial bodies that are much closer to us - so-called category 1a supernovae, which are a certain type of exploding star," explains Prof. Dr. Pavel Kroupa from the Helmholtz Institute of Radiation and Nuclear Physics at the University of Bonn. It is possible to determine the distance of a 1a supernova to Earth very precisely. We also know that shining objects change color when they move away from us - and the faster they move, the stronger the change. This is similar to an ambulance, whose siren sounds deeper as it moves away from us.

If we now calculate the speed of the 1a supernovae from their color shift and correlate this with their distance, we arrive at a different value for the Hubble-Lemaitre constant - namely just under 264,000 kilometers per hour per megaparsec distance. "The universe therefore appears to be expanding faster in our vicinity - that is, up to a distance of around three billion light years - than in its entirety," says Kroupa. "And that shouldn't really be the case."

However, there has recently been an observation that could explain this. According to this, the Earth is located in a region of space where there is relatively little matter - comparable to an air bubble in a cake. The density of matter is higher around the bubble. Gravitational forces emanate from this surrounding matter, which pull the galaxies in the bubble towards the edges of the cavity. "That's why they are moving away from us faster than would actually be expected," explains Dr. Indranil Banik from St. Andrews University. The deviations could therefore simply be explained by a local "under-density."

In fact, another research group recently measured the average speed of a large number of galaxies that are 600 million light years away from us. "It was found that these galaxies are moving away from us four times faster than the standard model of cosmology allows," explains Sergij Mazurenko from Kroupa's research group, who was involved in the current study.

Bubble in the dough of the universe
This is because the standard model does not provide for such under-densities or "bubbles" - they should not actually exist. Instead, matter should be evenly distributed in space. If this were the case, however, it would be difficult to explain which forces propel the galaxies to their high speed.

"The standard model is based on a theory of the nature of gravity put forward by Albert Einstein," says Kroupa. "However, the gravitational forces may behave differently than Einstein expected." The working groups from the Universities of Bonn and St. Andrews have used a modified theory of gravity in a computer simulation. This "modified Newtonian dynamics" (abbreviation: MOND) was proposed four decades ago by the Israeli physicist Prof. Dr. Mordehai Milgrom. It is still considered an outsider theory today. "In our calculations, however, MOND does accurately predict the existence of such bubbles," says Kroupa.

If one were to assume that gravity actually behaves according to Milgrom's assumptions, the Hubble tension would disappear: There would actually only be one constant for the expansion of the universe, and the observed deviations would be due to irregularities in the distribution of matter.

Research Report:Simultaneous solution to the Hubble tension and observed bulk flow within 250 h-1 Mpc

Related Links
University of Bonn
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
Everything, everywhere all at once
Boston MA (SPX) Nov 30, 2023
The way Morgane Konig sees it, questioning how we came to be in the universe is one of the most fundamental parts of being human. When she was 12 years old, Konig decided the place to find answers was in physics. A family friend was a physicist, and she attributed her interest in the field to him. But it wasn't until a trip back to her mother's home country of Cote d'Ivoire that Konig learned her penchant for the subject had started much younger. No one in Cote d'Ivoire was surprised she was pursu ... read more

TIME AND SPACE
Nigerians look to biofuel as cost of cooking gas soars

Chinese company gives leftover hotpot oil second life as jet fuel

Cheap and efficient ethanol catalyst from laser-melted nanoparticles

UK permits 'world-first' flight powered by sustainable fuels

TIME AND SPACE
AI accelerates problem-solving in complex scenarios

Snail-inspired robot could scoop ocean microplastics

Scientists build tiny biological robots from human cells

What does the future hold for generative AI?

TIME AND SPACE
UK unveils massive news windfarm investment by UAE, German firms

Wind and solar projects can profit from bitcoin mining

Winds of change? Bid to revive England's onshore sector

Drones to transport personnel and materials to offshore wind farms

TIME AND SPACE
To help robocars make moral decisions, researchers ditch the 'trolley problem'

China's electric bus revolution glides on

US proposes EV tax credit rules to curb Chinese inputs

Giddy Musk unveils Cybertruck in Tesla's latest defiant bet

TIME AND SPACE
Cost-effective electrocatalysts for cleaner hydrogen fuel production

Japanese experimental nuclear fusion reactor inaugurated

New study shows how universities are critical to emerging fusion industry

Glencore eyes options on battery recycling project

TIME AND SPACE
Framatome strengthens hafnium production for nuclear, aerospace and space customers

Russia unveils new icebreaker reactors for Arctic routes

US leads call to triple nuclear power at COP28

Nuclear power has role to play, atomic energy head tells AFP at COP28

TIME AND SPACE
COP28 draft agreement includes option to do nothing on fossil fuels

In Peru, a small carbon footprint is not a choice

Clean energy innovation or illusion? JETP climate funds

Vietnam lays out $15.5 billion energy transition roadmap

TIME AND SPACE
New suspect in murder of Honduras environmental leader

France pays Congo, Papua New Guinea $150 million to save forests

'It destroys everything': Amazon community fights carbon credit project

New study offers cautious hope about the resilience of redwoods

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.