Solar Energy News  
TECH SPACE
A new quantum approach to big data
by Staff Writers
Boston MA (SPX) Jan 29, 2016


This diagram demonstrates the simplified results that can be obtained by using quantum analysis on enormous, complex sets of data. Shown here are the connections between different regions of the brain in a control subject (left) and a subject under the influence of the psychedelic compound psilocybin (right). This demonstrates a dramatic increase in connectivity, which explains some of the drug's effects (such as "hearing" colors or "seeing" smells). Such an analysis, involving billions of brain cells, would be too complex for conventional techniques, but could be handled easily by the new quantum approach, the researchers say. Image reprinted with permission from "Homological scaffolds of brain functional networks," by Francesco Vaccarino et al., in Interface, published by the Royal Society.

From gene mapping to space exploration, humanity continues to generate ever-larger sets of data - far more information than people can actually process, manage, or understand. Machine learning systems can help researchers deal with this ever-growing flood of information. Some of the most powerful of these analytical tools are based on a strange branch of geometry called topology, which deals with properties that stay the same even when something is bent and stretched every which way.

Such topological systems are especially useful for analyzing the connections in complex networks, such as the internal wiring of the brain, the U.S. power grid, or the global interconnections of the Internet. But even with the most powerful modern supercomputers, such problems remain daunting and impractical to solve. Now, a new approach that would use quantum computers to streamline these problems has been developed by researchers at MIT, the University of Waterloo, and the University of Southern California.

The team describes their theoretical proposal this week in the journal Nature Communications. Seth Lloyd, the paper's lead author and the Nam P. Suh Professor of Mechanical Engineering, explains that algebraic topology is key to the new method. This approach, he says, helps to reduce the impact of the inevitable distortions that arise every time someone collects data about the real world.

In a topological description, basic features of the data (How many holes does it have? How are the different parts connected?) are considered the same no matter how much they are stretched, compressed, or distorted. Lloyd explains that it is often these fundamental topological attributes "that are important in trying to reconstruct the underlying patterns in the real world that the data are supposed to represent."

It doesn't matter what kind of dataset is being analyzed, he says. The topological approach to looking for connections and holes "works whether it's an actual physical hole, or the data represents a logical argument and there's a hole in the argument. This will find both kinds of holes."

Using conventional computers, that approach is too demanding for all but the simplest situations. Topological analysis "represents a crucial way of getting at the significant features of the data, but it's computationally very expensive," Lloyd says. "This is where quantum mechanics kicks in." The new quantum-based approach, he says, could exponentially speed up such calculations.

Lloyd offers an example to illustrate that potential speedup: If you have a dataset with 300 points, a conventional approach to analyzing all the topological features in that system would require "a computer the size of the universe," he says. That is, it would take 2300 (two to the 300th power) processing units - approximately the number of all the particles in the universe. In other words, the problem is simply not solvable in that way.

"That's where our algorithm kicks in," he says. Solving the same problem with the new system, using a quantum computer, would require just 300 quantum bits - and a device this size may be achieved in the next few years, according to Lloyd.

"Our algorithm shows that you don't need a big quantum computer to kick some serious topological butt," he says.

There are many important kinds of huge datasets where the quantum-topological approach could be useful, Lloyd says, for example understanding interconnections in the brain. "By applying topological analysis to datasets gleaned by electroencephalography or functional MRI, you can reveal the complex connectivity and topology of the sequences of firing neurons that underlie our thought processes," he says.

The same approach could be used for analyzing many other kinds of information. "You could apply it to the world's economy, or to social networks, or almost any system that involves long-range transport of goods or information," Lloyd says. But the limits of classical computation have prevented such approaches from being applied before.

While this work is theoretical, "experimentalists have already contacted us about trying prototypes," he says. "You could find the topology of simple structures on a very simple quantum computer. People are trying proof-of-concept experiments."

The team also included Silvano Garnerone of the University of Waterloo in Ontario, Canada, and Paolo Zanardi of the Center for Quantum Information Science and Technology at the University of Southern California.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Microsoft donates cloud computing 'worth $1 bn'
San Francisco (AFP) Jan 19, 2016
Microsoft said Tuesday it will put a billion dollars' worth of cloud computing power in the hands of non-profit groups and university researchers free of charge. A philanthropic arm of the US software colossus will make the donation during the coming three years to 70,000 non-profit groups and researchers, chief executive Satya Nadella said while attending the World Economic Forum in Davos, ... read more


TECH SPACE
UCR research advances oil production in yeast

Assessment aims to maximize greenhouse gas reductions from bioenergy

One-stop shop for biofuels

Automakers' green push lifts use of hemp, citrus peel

TECH SPACE
Microbots individually controlled using 'mini force fields'

Russian Scientists Developing Avatar Robot for Extraterrestrial Exploration

NASA Marshall Center to Host FIRST Robotics Kick-Off at USSRC

Will computers ever truly understand what we're saying

TECH SPACE
Health concerns in wind energy developments

OX2 sells 42 MW wind farm to IKEA in Finland

E.ON readies wind farm for English Channel

Strong winds help Denmark set wind energy world record

TECH SPACE
Germany approves scandal-hit VW's recall plan for 2.0-litre cars

Toyota keeps top global automaker crown, sells 10.15 mn in 2015

Conductive concrete could keep roads safer in winter weather

Head of Apple electric car team to leave: report

TECH SPACE
Corvus Energy announces new performance specifications for lithium ion battery systems

Creation of Jupiter interior, a step towards room temp superconductivity

Non-platinum catalysts for fuel cells remain a mystery

Researchers prove surprising chemistry inside a potential breakthrough battery

TECH SPACE
Chinese nuclear firm named world's 5th largest

Russia Pledges $300,000 to IAEA's Innovative Nuclear Reactors Project

Turkey to continue current joint energy projects with Russia

Total nuclear power capacity in China to double by 2020

TECH SPACE
Australian farmers to benefit from renewables boost

War Between Saudi Arabia And Iran Could Send Oil Prices To $250

China 2015 electricity output down 0.2 percent

Clean energy to conquer new markets in 2016

TECH SPACE
New trial opens in Costa Rica environmentalist's murder

NUS study shows the causes of mangrove deforestation in Southeast Asia

The Amazon's future

Tens of millions of trees in danger from California drought









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.