Solar Energy News  
STELLAR CHEMISTRY
A trick of the light
by Staff Writers
Lemont, IL (SPX) Sep 13, 2018

illustration only

Particle physicists are on the hunt for light. Not just any light, but a characteristic signal produced by the interaction of certain particles - like ghostly neutrinos, which are neutral fundamental particles with very low mass - with a detector that contains an atomic sea of liquefied noble gases.

Even if it were brighter, this light signal would be undetectable by our eyes because it falls in the ultraviolet (UV) range of the electromagnetic spectrum. And just as our eyes are not equipped to see UV light, most conventional photodetector systems for particle physics experiments work much better in the visible range than they do in UV.

However, new work at the U.S. Department of Energy's (DOE) Argonne National Laboratory is bringing the power of nanotechnology to particle physics in an effort to make photosensors work better in experimental environments where UV light is produced, like massive liquid argon-filled detector modules.

"You can go online and buy photosensors from companies, but most of them are in the visible range, and they sense photons that we can see, visible light," said Argonne high-energy physicist Stephen Magill.

To make their photosensors more sensitive to UV radiation, Magill and his colleagues at Argonne and the University of Texas at Arlington applied coatings of different nanoparticles to conventional photodetectors. Across a wide range of varying compositions, the results were dramatic. The enhanced photosensors demonstrated significantly greater sensitivity to UV light than the coating-free photodetectors.

The reason that the nanoparticles work, according to Magill, has to do with their size. Smaller nanoparticles can absorb photons of shorter wavelengths, which are later re-emitted as photons of longer wavelengths with lower energy, he said. This transition, known to scientists as the "Stokes shift," converts UV photons to visible ones.

"We're always looking to find better materials that will allow us to detect our particles," Magill said. "We'd like to find a single material that will allow us to identify a specific particle and not see other particles. These nanoparticles help get us closer."

The types of experiments for which scientists use these enhanced photodetectors are considered part of the "intensity frontier" of high-energy physics. By being more sensitive to whatever small ultraviolet signal is produced, these nanoparticle coatings increase the chances of detecting rare events and may allow scientists a better view of phenomena like neutrino oscillations, in which a neutrino changes type.

The advantages of this kind of new material could also reach beyond the purview of particle physics. Magill suggested that the particles could be incorporated into a transparent glass that could enhance the amount of visible light available in some dim environments.

"There's a lot of light out there between 300 nanometers and 400 nanometers that we don't see and don't use," Magill said. "By shifting the wavelength, we could create a way for that light to become more useful."

Research Report: "Wavelength-shifting properties of luminescence nanoparticles for high-energy particle detection and specific physics process observation"


Related Links
Argonne National Laboratory
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Shape-shifting material can morph, reverse itself using heat, light
Boulder CO (SPX) Aug 27, 2018
A new material developed by University of Colorado Boulder engineers can transform into complex, pre-programmed shapes via light and temperature stimuli, allowing a literal square peg to morph and fit into a round hole before fully reverting to its original form. The controllable shape-shifting material, described in the journal Science Advances, could have broad applications for manufacturing, robotics, biomedical devices and artificial muscles. "The ability to form materials that can repea ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Barriers and opportunities in renewable biofuels production

Europe's renewable energy initiative is bad news for forest health, scientists argue

Methane to syngas catalyst: two for the price of one

Biodegradable plastic blends offer new options for disposal

STELLAR CHEMISTRY
Robot can pick up any object after inspecting it

A cyborg cockroach could someday save your life

Lockheed Martin Partners with Deakin University to Further Develop Industrial Exoskeleton

If military robot falls, it can get itself up

STELLAR CHEMISTRY
Wind Power: It is all about the distribution

Big wind, solar farms could boost rain in Sahara

DNV GL supports creation of China's first HVDC offshore wind substation

China pushes wind energy efforts further offshore

STELLAR CHEMISTRY
French police disperse protesters opposed to motorway construction

VW faces first big German court date over 'dieselgate'

Another Tesla executive heads for exit

VW faces first big German court date over 'dieselgate'

STELLAR CHEMISTRY
New high-capacity sodium-ion could replace lithium in rechargeable batteries

Not too wet, not too dry: plasma-treated fuel cell gets it just right

Separating the sound from the noise in hot plasma fusion

Optimal magnetic fields for suppressing instabilities in tokamaks

STELLAR CHEMISTRY
Nuclear energy may see role wane, UN agency says

MIT Energy Initiative study reports on the future of nuclear energy

Austria to appeal EU court ruling on UK nuclear plant

S.Africa drops Zuma's nuclear expansion dreams

STELLAR CHEMISTRY
Electricity crisis leaves Iraqis gasping for cool air

Energy-intensive Bitcoin transactions pose a growing environmental threat

Germany thwarts China by taking stake in 50Hertz power firm

Global quadrupling of cooling appliances to 14 billion by 2050

STELLAR CHEMISTRY
Manmade mangroves could get to the 'root' of the problem for threats to coastal areas

How the forest copes with the summer heat

Mangrove expansion and climatic warming may help ecosystems keep pace with sea level rise

Norway builds world's tallest timber tower









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.