Solar Energy News  
TIME AND SPACE
Abrupt excitation phenomenon in high-temperature plasma
by Staff Writers
Tokyo, Japan (SPX) Jan 14, 2016


This shows the restoring force against the growth of fluctuations. When the amplitude is lower than the threshold value, the amplitude approaches zero and is stable (black). Separating from the center, when the amplitude exceeds the threshold value, the amplitude abruptly grows red. Image courtesy National Institutes of Natural Sciences. For a larger version of this image please go here.

At the National Institutes of Natural Sciences National Institute for Fusion Science, researchers have developed the high-energy heavy ion beam probe, in order to perform potential measurement inside a high-temperature plasma that was generated in the Institute's Large Helical Device (LHD).

Engaging in collaborative research with Kyushu University's Research Institute for Applied Mechanics, they have discovered the new phenomenon of abrupt excitation of fluctuations and have clarified the mechanism of this phenomenon. Two successive research papers that summarize these research results were published in Physical Review Letters, the journal of the American Institute of Physics, on January 8, 2016.

Seeking to achieve nuclear fusion, research on the high-temperature plasma of more than 100,000,000 degrees Celsius is being conducted around the world. In a magnetically confined plasma, sometimes there abruptly occurs the excitation of fluctuations with large amplitude, which leads to a possible plasma loss.

Such a phenomenon influences the performance of the nuclear fusion reactor. Because there is the possibility of damage to the surrounding construction material, clarifying the mechanisms that lead to excitation, predicting excitation, and avoiding excitation are important issues.

On the other hand, in cosmic plasma, too, similar abrupt phenomena occur, and among them the appearance of solar flares is well known. However, in either case, why large events abruptly occur is not well understood. At present, this is an unsolved problem.

The research group of Dr. Takeshi Ido, of the National Institute for Fusion Science, in order to observe the plasma potential inside a high-temperature plasma produced in the LHD and that exceeds one hundred of millions of degrees Celsius, has developed a diagnostic device (the heavy ion beam probe [1]).

Using that device, when measuring fluctuations in a plasma, his research group discovered a new phenomenon in which fluctuations typically thought to be stable did grow abruptly, accompanied by a large oscillation amplitude. (See Figure 1.) Examining the experimental data in detail, they achieved the result in which before the excitation of this abrupt fluctuations occurred there was generated a separate fluctuation. That precedent fluctuation triggered the process, and a result which indicates abrupt large amplitude fluctuations had been obtained.

Through collaborative research with the research group of Dr. Sanae-I. Itoh, of Kyushu University's Research Institute for Applied Mechanics, the researchers constructed a new theoretical model for explaining this phenomenon. When they conducted confirmations through numerical simulations they successfully reproduced the experimental results. (See Figure 1, right.) From this, they were able to discover the heretofore unknown phenomenon of abrupt excitation of fluctuations, to clarify the mechanism, and to predict excitation.

The important points of these research results are that they proved that when the stimulus from outside is beyond a certain level, the physical mechanism exists in a high-temperature plasma that excites abrupt and large amplitude fluctuations, and they clarified the conditions necessary for excitation. Phenomena that possess this type of quality are called subcritical instability. (See Figure 2.)

As an example of the phenomenon in which large amplitude fluctuations abruptly is excited, in a magnetically confinement plasma, there are collapse phenomena such as sawtooth oscillation and disruption which degrades plasma performance, and in cosmic plasma there is the abrupt occurrence of solar flares.

The generation mechanisms for these abrupt phenomena are unresolved questions that have long been debated. As candidates for causing these abrupt phenomena, the existence of subcritical instability was indicated theoretically.

Through this research, it has been proven for the first time that such an instability exists in geodesic acoustic waves, which are in a plasma, and we successfully predicted the occurrence of this phenomenon.

These results are expected to be indicators in addition to advancing our understanding of numerous abrupt phenomena that are widely observed. The abrupt excitation of fluctuations that has been discovered gives indications of the possibility of plasma heating that these fluctuations contribute to.

Moreover, research in a confined plasma that can clarify the occurrence mechanism of abrupt phenomena and predict occurrence will contribute greatly to future nuclear fusion research and the development of science and technology, such as avoiding damage to the nuclear fusion reactor and suppressing damage from magnetic storms.

T. Ido, K. Itoh, M. Osakabe, M. Lesur, A. Shimizu, K. Ogawa, K. Toi, M. Nishiura, S. Kato, M. Sasaki, K. Ida, S. Inagaki, S.-I. Itoh, and the LHD Experiment Group "Strong destabilization of stable modes with a half-frequency associated with chirping geodesic acoustic modes in the Large Helical Device"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National Institutes of Natural Sciences
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Physicists offer theories to explain mysterious collision at Large Hadron Collider
Notre Dame IN (SPX) Jan 10, 2016
Physicists around the world were puzzled recently when an unusual bump appeared in the signal of the Large Hadron Collider, the world's largest and most powerful particle accelerator, causing them to wonder if it was a new particle previously unknown, or perhaps even two new particles. The collision cannot be explained by the Standard Model, the theoretical foundation of particle physics. ... read more


TIME AND SPACE
Second-generation biofuels can reduce emissions

NREL's Min Zhang keeps her 'hugs' happy, leading to biofuel breakthroughs

IU scientists create 'nano-reactor' for the production of hydrogen biofuel

EU probes UK aid to convert huge coal power plant to biomass

TIME AND SPACE
New social robot Nadine has a personality

Human-machine superintelligence can solve the world's most dire problems

NTU scientists unveil social and telepresence robots

U.S. Marine Corps rules out robotic dog, mule

TIME AND SPACE
Scotland sees local benefits from renewables

Dutch vote 'setback' to green energy plan: Greenpeace

South Australian Government renews energy for change

Approval of South Australian Wind Farm

TIME AND SPACE
BMW reports record sales in 2015, but sees slowdown in China

Diesel cars' prospects in US dim with VW scandal

End of the road for rearview mirror?

US authorities rebuff VW diesel recall plan

TIME AND SPACE
A nanophotonic comeback for incandescent bulbs

A simple way to make lithium-ion battery electrodes that protect themselves

Unique 2-level cathode structure improves battery performance

Inventive thinkers at NREL reach record number

TIME AND SPACE
IAEA Starts Assessment of Japan's Efforts on Safe Use of Nuclear Plants

Japan to send plutonium cache to US under nuclear deal: report

Graphene filter can clean nuclear wastewater

Belgian nuclear reactor shut down three days after restarting

TIME AND SPACE
What motivates people to walk and bike? It varies by income

Global electricity production vulnerable to climate and water resource change

Improving electric motor efficiency via shape optimization

Cool roofs in China offer enhanced benefits during heat waves

TIME AND SPACE
NUS study shows the causes of mangrove deforestation in Southeast Asia

The Amazon's future

Tens of millions of trees in danger from California drought

Modeling Amazonian transitional forest micrometeorology









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.