Solar Energy News  
SPACE MEDICINE
An antioxidative stress regulator protects muscle tissue in space
by Staff Writers
Ibaraki, Japan (SPX) Jul 12, 2021

illustration only

Most kids dream of growing up to be astronauts; but the downside of spending extended amounts of time in low gravity is that astronauts' muscles tend to shrink and weaken through disuse. Now, researchers from Japan have identified a protein that affects how muscles respond to space flight.

In a study published in June 2021 in Communications Biology, researchers from the University of Tsukuba have revealed that nuclear factor E2-related factor 2, or NRF2, helps keep muscles from becoming weak in low gravity.

Muscle atrophy, or weakening, is a common feature of disease and aging. It can also occur after a long period of inactivity, such as during space flight, when astronauts don't need to use their muscles as much as they do on Earth to support their weight or move around. When muscles atrophy in space, they not only decrease in size, but they also tend to lose a type of fiber called "slow-twitch" and gain more fibers called "fast-twitch."

"This conversion from slow- to fast-twitch muscle fibers is closely associated with an increase in oxidative stress," explains Professor Satoru Takahashi, the senior author of the study. "Thus, we expected that removing factors that protect against oxidative stress would accelerate muscle atrophy under microgravity conditions."

To explore this, the researchers deleted the gene encoding NRF2, which helps controls the body's response to oxidative stress, in mice. The mice were then sent to live on the International Space Station for a month. When the mice returned, the researchers compared their calf muscles with those from mice who had spent the same month on Earth.

"We were surprised to find that the Nrf2-knockout mice did not lose any more muscle mass than the control mice under a microgravity environment," says Professor Takahashi. "However, they did show a significantly accelerated rate of slow-to-fast fiber type transition."

In addition to this change in muscle composition, there were also noticeable changes in the way that the muscle tissue used energy and nutrients. This shift in energy metabolism is a common feature of fiber type transition.

"Our findings suggest that NFR2 alters skeletal muscle composition during space flight by regulating oxidative and metabolic responses," states Professor Takahashi.

Given this newly discovered role for NFR2, finding treatments that target this protein could be useful for helping prevent muscle changes in astronauts during space flight. Targeting NFR2 could also be a promising avenue for addressing muscle wasting in diseases like cancer or during the aging process.

Research Report: "Nuclear factor E2-related factor 2 (NRF2) deficiency accelerates fast fibre type transition in soleus muscle during space flight"


Related Links
University Of Tsukuba
Space Medicine Technology and Systems


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SPACE MEDICINE
Sweat-proof "smart skin" takes reliable vitals, even during workouts and spicy meals
Boston MA (SPX) Jul 02, 2021
MIT engineers and researchers in South Korea have developed a sweat-proof "electronic skin" - a conformable, sensor-embedded sticky patch that monitors a person's health without malfunctioning or peeling away, even when a wearer is perspiring. The patch is patterned with artificial sweat ducts, similar to pores in human skin, that the researchers etched through the material's ultrathin layers. The pores perforate the patch in a kirigami-like pattern, similar to that of the Japanese paper-cutting a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
Unlocking the power of the microbiome

Cleaner air has boosted US corn and soybean yields

Switching it up to make better grass for bioenergy crops

Catalyzing the conversion of biomass to biofuel

SPACE MEDICINE
Defense Secretary Austin calls for ethical AI development

DARPA Announces Research Teams to Develop Intelligent Event-Based Imagers

Giving robots better moves

Japan's SoftBank suspends production of chatty robot Pepper

SPACE MEDICINE
Shell, France's EDF to build US offshore windfarm

Wind and the sun power Greek islands' green energy switch

US to open California coast to wind power

US approves its biggest offshore wind farm yet

SPACE MEDICINE
Paris to extend 30 kph speed limit to most streets

EU slaps VW, BMW with 875-mn-euro antitrust fine

Will drivers get burned by EU ban on ICE cars?

UK publishes plans to decarbonise transport by mid-century

SPACE MEDICINE
Plans drafted for another UK battery gigafactory

Nissan announces UK battery gigafactory, new electric car

UK auto sector embraces electric car 'gigafactories'

France hails Chinese battery factory for Renault in electric push

SPACE MEDICINE
Framatome Healthcare established to apply industry expertise to medical sector

Steam Generating Team JV contracted to replace Units 3 and 4 at Bruce NPP

Neutron-clustering effect in nuclear reactors demonstrated for first time

Framatome's first reload of GAIA fuel installed in a US reactor

SPACE MEDICINE
Developing nations demand climate funding before COP26

Myanmar electricity grid losing spark as people power bites

EU wades into battle over its green revolution

EU begins 'bloody hard' battle to reach green ambition

SPACE MEDICINE
Environment watchdogs oppose lifting of DR Congo logging ban

Warming, deforestation turn Amazon into source of CO2

The battle for Brazil's indigenous land hots up

New June record for deforestation of Brazilian Amazon









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.