. Solar Energy News .




.
STELLAR CHEMISTRY
Ancient blue stragglers
by Staff Writers
Evanston IL (SPX) Oct 24, 2011

File image.

Mysterious "blue stragglers" are old stars that appear younger than they should be: they burn hot and blue. Several theories have attempted to explain why they don't show their age, but, until now, scientists have lacked the crucial observations with which to test each hypothesis.

Armed with such observational data, two astronomers from Northwestern University and the University of Wisconsin-Madison report that a mechanism known as mass transfer explains the origins of the blue stragglers. Essentially, a blue straggler eats up the mass, or outer envelope, of its giant-star companion.

This extra fuel allows the straggler to continue to burn and live longer while the companion star is stripped bare, leaving only its white dwarf core.

The scientists report their evidence in a study to be published by the journal Nature.

The majority of blue stragglers in their study are in binaries: they have a companion star. "It's really the companion star that helped us determine where the blue straggler comes from," said Northwestern astronomer Aaron M. Geller, first author of the study.

"The companion stars orbit at periods of about 1,000 days, and we have evidence that the companions are white dwarfs. Both point directly to an origin from mass transfer."

Geller is the Lindheimer Postdoctoral Fellow in the Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and the department of physics and astronomy in Northwestern's Weinberg College of Arts and Sciences. Robert Mathieu, professor of astronomy and chair of the astronomy department at UW-Madison, is co-author of the study.

The astronomers studied the NGC 188 open cluster, which is in the constellation Cepheus, situated in the sky near Polaris, the North Star. This cluster is one of the most ancient open star clusters, but it features these mysterious young blue stragglers.

The cluster has around 3,000 stars, all about the same age, and has 21 blue stragglers. Geller and Mathieu are the first to use detailed observational data from the WIYN Observatory in Tucson, Ariz., of the blue stragglers in NGC 188.

They used the information to analyze and compare the three main theories of blue straggler formation: collisions between stars, mergers of stars and mass transfer from one star to another. The only one left standing was the theory of mass transfer.

The light from the blue stragglers' companion stars is not actually visible in Geller and Mathieu's observations. While the companions haven't been seen directly, their effect on the blue stragglers is evident: each companion pulls gravitationally on its blue straggler and creates a "wobble" as it orbits, and this allows astronomers to measure the mass of the companion stars. The WIYN data show that each companion star is about half the mass of the sun, which is consistent with a white dwarf.

The other two origin theories - collisions and mergers - require the companion stars to be more massive than what is observed. In fact, in both scenarios, some of the companion stars could be bright enough to be visible in the WIYN data, which is not the case.

"We think we have a good understanding of stellar evolution, but it doesn't predict blue stragglers," Geller said. "People have been trying to explain the origin of blue stragglers since their discovery in 1953, and now we have the detailed observations needed to identify how they were created. I've always enjoyed trying to get to the bottom of a mystery."

"As so often happens in astronomy, it is the objects that you don't see that provide the critical clues," said Mathieu, an expert on binary stars. "Now we will use the Hubble Space Telescope to search for the ultraviolet light in which white dwarf secondary stars shine."

Geller, Mathieu and their colleagues will have, in about a year's time, observations from Hubble that will tell them if the blue stragglers' companions are indeed white dwarfs.

The NGC 188 data set was collected during the last decade by the 3.5-meter WIYN Telescope on Kitt Peak, Ariz., as part of the WIYN Open Cluster Study led by Mathieu. The observatory is operated by UW-Madison, Indiana University, Yale University and the National Optical Astronomical Observatory (NOAO).

The title of the paper is "A Mass Transfer Origin for Blue Stragglers in NGC 188 as Revealed by Half-Solar-Mass Companions."

Related Links
Northwestern University
Stellar Chemistry, The Universe And All Within It




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



STELLAR CHEMISTRY
Distant Galaxies Reveal The Clearing of the Cosmic Fog
Paris, France(ESO) Oct 18, 2011
Scientists have used ESO's Very Large Telescope to probe the early Universe at several different times as it was becoming transparent to ultraviolet light. This brief but dramatic phase in cosmic history - known as reionisation - occurred around 13 billion years ago. By carefully studying some of the most distant galaxies ever detected, the team has been able to establish a timeline for re ... read more


STELLAR CHEMISTRY
Greenpeace targets Neste Oil over palm oil production

Global Biofuels Market Value to Double by 2021

Production of biofuel from forests will increase greenhouse emissions

Dividing corn stover makes ethanol conversion more efficient

STELLAR CHEMISTRY
Robotic bug gets wings, sheds light on evolution of flight

Tokyo tech fair opens with robotic clapping of hands

Robot biologist solves complex problem from scratch

Robot biologist solves complex problem from scratch

STELLAR CHEMISTRY
SeaRoc and CDS Wind sign joint agreement to deliver offshore renewable services

SeaRoc to provide two Meteorological Masts to Forewind on Round 3 Dogger Bank

Vestas receives 99MW order for Texas wind-energy project

GE invests in Indian wind power

STELLAR CHEMISTRY
Chinese firms say Saab bail-out deal still valid

Electromobility: New Components Going for a Test Run

Nissan eyes 1.5 million electric cars by 2016

Saab owner breaks off Chinese funding deal: company

STELLAR CHEMISTRY
Electrochemistry controlled with a plasma electrode

Using new technique, scientists uncover a delicate magnetic balance for superconductivity

Saudi royals face succession uncertainties

BP says reaches turning point, 18 months after oil disaster

STELLAR CHEMISTRY
New method of growing high-quality graphene promising for next-gen technology

Giant flakes make graphene oxide gel

Amorphous diamond, a new super-hard form of carbon created under ultrahigh pressure

Molecular Depth Profiling Modeled Using Buckyballs and Low-Energy Argon

STELLAR CHEMISTRY
California approves carbon cap-and-trade

China warns of winter power shortage

Links in the chain: Global carbon emissions and consumption

Serbia signs power plant deal with China

STELLAR CHEMISTRY
Iceland to help France save trees from global warming

Bolivia reaches agreement with Amazon protesters

Bolivia natives, president in talks stand-off

Bolivia cancels controversial Amazon highway


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement