Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
Angling chromium to let oxygen through
by Staff Writers
Richland, WA (SPX) Sep 15, 2014


Routing: Oxygen can zigzag or take a circular route (red arrows) through this semiconducting crystal made of strontium (green), chromium (blue), and oxygen (red). Image courtesy of Nature Communications

Researchers have been trying to increase the efficiency of solid oxide fuel cells by lowering the temperatures at which they run. More efficient fuel cells might gain wider use in vehicles or as quiet, pollution-free, neighborhood electricity generating stations.

A serendipitous finding has resulted in a semiconducting material that could enable fuel cells to operate at temperatures two-thirds lower than current technology, scientists reported August 18 in Nature Communications.

In an attempt to create a metal oxide with the properties of metal, researchers at the Department of Energy's Pacific Northwest National Laboratory created a new form of the metal oxide. This particular strontium-chromium oxide performs as a semiconductor, or a material whose ability to conduct electricity can be turned on and off.

It also allows oxygen to diffuse easily, a requirement for a solid oxide fuel cell. Best yet, it allows diffusion at a temperature that can lead to much more efficient fuel cells.

Nothing is Something
Energy researchers need improved materials to make fuel cells more widely used. Solid oxide fuel cells require oxides capable of absorbing and transmitting negatively charged oxygen atoms at low temperature. Current materials require temperatures around 800 degrees Celsius (for reference, car engines run at about 200 degrees Celsius and steel melts around 1500).

Researchers at PNNL were trying to make strontium chromium oxide in a kind of crystalline form called perovskite, which has many useful electronic properties. In this material, the strontium, chromium and oxygen atoms stack together in a cube. The metal atoms - strontium and chromium - bond completely to the oxygen atoms around them.

However, in the material that formed, the strontium chromium oxide packed into a rhombus-shaped crystal - think diamond - and many of the oxygen atoms were missing.

What's more, the holes where the oxygen atoms had been, also called oxygen vacancies, had come together to form well-defined planes within the new crystal structure. The researchers found that these planes act as channels that allow oxygen from outside the material to diffuse through the material at an exceptionally low temperature for these materials, about 250 degrees Celsius.

"At high enough concentrations, oxygen vacancies aggregate and form new mesoscale structures with novel properties that the original material doesn't have," said PNNL materials scientist Scott Chambers, who led the research. "In this case, the mesoscale crystalline structure transmits oxygen very efficiently."

Bad Angle Bonds
The scientists inadvertently generated the material by taking advantage of the natural tendency of chromium atoms to avoid certain bonding environments. They found that their attempts to make metallic SrCrO3 (strontium chromium oxide in a ratio of 1:1:3) lead instead to the formation of semiconducting SrCrO2.8 (with a ratio of 1:1:2.8).

Because chromium as an ion with a charge of +4 does not like to form 90o bonds with oxygen, as it must in SrCrO3, SrCrO2.8 forms instead with a completely different crystal structure. This material contains oxygen-deficient regions through which oxygen can diffuse very easily. Those regions might provide a way to take better advantage of the material's electronic properties.

"As an additional benefit, ordered arrays of oxygen vacancies might allow us to separate the material's electronic and thermal properties," said Chambers. "This would help us improve the performance of thermoelectrics, in either generating power from heat or for use in refrigeration."

The team made ultra-pure crystalline films of the new material and used instruments and expertise at EMSL, DOE's Environmental Molecular Sciences Laboratory, to understand the material's properties. A DOE Office of Science User Facility, EMSL scientists worked with Chambers to develop a new instrument called an oxygen-assisted molecular beam epitaxy deposition system that is specifically designed to make and study these kinds of crystalline films.

Towards Light and Electrons
In the future, the team plans to apply the understanding gained to other materials, such as the deposition, characterization, and understanding of epitaxial strontium-doped lanthanum chromite, which has potential importance in visible light harvesting.

In the long term, the team plans to exploit the observed phenomenon to carry out nanofabrication of novel heterogeneous catalytic structures by depositing submonolayer quantities of catalytically important metals on the surface of rhombus-shaped, semiconducting oxide, and using the intersection of the defect planes with the free surface to order the incoming metal atoms into nanowires.

Hong-Liang Zhang, Peter V. Sushko, RJ Colby, Yingge Du, Mark E. Bowden , and Scott A. Chambers. 2014. Reversible Nano-Structuring of SrCrO3-d Through Oxidization and Reduction at Low Temperatures. Nature Communications, August 18, 2014. DOI: 10.1038/ncomms5669.

.


Related Links
Pacific Northwest National Laboratory
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
How salt causes buildings to crumble
Zurich, Switzerland (SPX) Sep 15, 2014
Salt crystals are often responsible when buildings start to show signs of ageing. Researchers from the Institute for Building Materials have studied salt damage in greater depth and can now predict weathering processes more accurately. Historic stone buildings are tourist magnets. The Jordanian rock city of Petra, the medieval town of Rhodes in the Aegean Sea and the sandstone temples at L ... read more


TECH SPACE
3D imaging may improve understanding of biofuel plant materials

Ethanol fireplaces: the underestimated risk

ACCESS II Confirms Jet Biofuel Burns Cleaner

Scientists create renewable fossil fuel alternative using bacteria

TECH SPACE
Cutting the cord on soft robots

iRobot supplying its PackBots to Canada

Watch MIT's Atlas robot carry heavy objects

DARPA issues RFI for robotic space services for satellites

TECH SPACE
Wind Turbines Outperforming Expectations at Honda Transmission Plant

Stealth wind turbines to become operational in France in 2015

EU calls for study of 2020 renewable energy targets

Go green and prosper, British government says

TECH SPACE
Electric supercar race ends in a serious crash

China fines Volkswagen affiliate $40.5 mn for price-fixing

Toshiba Provides Rapid Recharge SCiBT Batteries for Proterra Bus Fleet

Moscow Plans to Install 150 Electric Vehicle Charging Stations

TECH SPACE
Scottish scientists make 'tremendously important' breakthrough in water to hydrogen production proce

Plugged-in to the future

First-ever look inside a working lithium-ion battery

Clean coal key to combating climate change: Rio Tinto

TECH SPACE
Japan newspaper apologises for false Fukushima report

Westinghouse Signs Agreements with China's SNPAS

Japan nuclear watchdog backs restart of two reactors

Japan's first female industry chief visits Fukushima plant

TECH SPACE
IRENA: Outdated thinking curbing green energy momentum

Zimbabwe launches $500-mln power units to ease energy woes

Existing power plants will spew 300 billion more tons of carbon dioxide during use

Yale Journal Explores Advances In Sustainable Manufacturing

TECH SPACE
Climate change could 'fundamentally alter' US forests

Amazon deforestation up 29 pc in 2013 -- Brazil

New NASA Probe Will Study Earth's Forests in 3-D

Brazil cracks 'biggest' Amazon deforestation gang




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.