Solar Energy News  
TECH SPACE
Ants: Both solid-like and liquid-like
by Staff Writers
Atlanta GA (SPX) Oct 28, 2015


Ants were sheared in a rheometer, a machine used to test the solid-like and liquid-like response of materials such as food, hand cream or melted plastic.The researchers found that the behavior of live ants was similar to that of dead ants: when the aggregation is forced to flow, live ants let go and play dead. In this case, the viscosity dramatically decreased as the speed increased. Image courtesy Georgia Tech. For a larger version of this image please go here.

Collections of ants have a remarkable ability to change shapes and tasks based on the demands of their environment. When floodwaters hit, they self-assemble and form rafts to stay alive. They can also use their bodies to build bridges and span gaps. What are the properties of these ant aggregations that allow for this wide range of abilities? New research from the Georgia Institute of Technology says it's because the insects are actually liquid-like and solid-like simultaneously. The study is currently published in Nature Materials.

The Georgia Tech group probed the mechanical properties of fire ant aggregations by putting thousands of ants into a rheometer, a machine used to test the solid-like and liquid-like response of materials such as food, hand cream or melted plastic.

The ants were sheared at constant speeds from about 0.0001 rpm up to about 100 rpm. The researchers found that the behavior of live ants was similar to that of dead ants: when the aggregation is forced to flow, live ants let go and play dead. In this case, the viscosity dramatically decreased as the speed increased.

"It's not unlike ketchup," said Alberto Fernandez-Nieves, an associate professor in the School of Physics. "The harder you squeeze, the easier it flows. But with ants, this happens much more dramatically than with ketchup."

"Ants seem to have an on/off switch in that they let go for sufficiently large applied forces," said Hu, an associate professor in the George W. Woodruff School of Mechanical Engineering. "Despite wanting to be together, they let go and behave like a fluid to prevent getting injured or killed."

This same behavior can be seen by dropping a penny through an ant aggregation. Ants will flow around the coin as it sinks through the aggregation. This flow takes a relatively long time to happen. However, when the aggregation is poked quickly, it responds like a spring and returns to its original shape.

"This is the hallmark of viscoelastic behavior," said Fernandez-Nieves. "The ants exhibit a springy-response when probed at short times, but behave fluid-like at longer times."

The group quantified this by looking at the ants' response to tiny wiggles of the rheometer. They found that the ants are equally liquid-like and solid-like. They did the same experiment with dead ants and saw that they are also solid-like. This showed that live ants are liquid-like and solid-like because of their activity.

"Remarkably, the observed behavior is similar to what is seen in materials that are not alive, like polymer gels right at the point when they become a gel," said Fernandez-Nieves. "This is quite puzzling, and we are now performing many more experiments to try and understand where these similarities arise from and how much they can be pushed. Doing this will hopefully extend our current way of thinking about materials, that like the ants, are active and thus out-of-equilibrium. There is much more interesting work we plan on doing with ants."

Hu has studied ant behavior for nearly 10 years. Fernandez-Nieves is a physicist who uses rheology to understand the mechanics of soft materials and unravel the microscopic origin of their overall properties and behaviors.

Michael Tennenbaum, a graduate research assistant who participated in the study, also compared the behavior of the ant aggregation to jello.

"Imagine if you wanted to make the most jello possible out of a packet of gelatin. It would be solid, but also very liquidy," he said. "That's because there would be just barely enough gelatin to make it solid-like but not enough to make it completely solid. The jello would be both solid-like and liquid-like."

Hu has also used the liquid-like nature of the ants to study self-healing materials.

"If you cut a dinner roll with a knife, you're going to end up with two pieces of bread," said Hu. "But if you cut through a pile of ants, they'll simply let the knife go through, then reform on the other side. They're like liquid metal - just like that scene in the Terminator movie."

Hu says it's this flexibility that allows ants to enjoy the best of both worlds. They're able to become solids to make things and liquids to avoid breaking into "smithereens."

The study, "Mechanics of Ant Aggregations," was published in Nature Materials on October 26, 2015.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Georgia Institute of Technology
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Researchers observe surprising phase transition
West Lafayette IN (SPX) Oct 27, 2015
An ultrapure material taken to pressures greater than that in the depths of the ocean and chilled to temperatures colder than outer space has revealed an unexpected phase transition that crosses two different phase categories. A Purdue University-led team of researchers observed electrons transition from a topologically ordered phase to a broken symmetry phase. "To our knowledge, a transit ... read more


TECH SPACE
Wood instead of petroleum: Producing chemical substances solely from renewable resources

New UT study highlights environmental, economic shortcomings of federal biofuel laws

Light emitting diodes made from food and beverage waste

Study: Africa's urban waste could produce rural electricity

TECH SPACE
'Spring-mass' technology heralds the future of walking robots

Dive of the RoboBee

Can ballet bugs help us build better robots

NASA's Next Sample Return Robot Challenge Open for Registration

TECH SPACE
E.ON finishes German wind farm

Adwen and IWES sign agreement for the testing of 8MW turbine

US has fallen behind in offshore wind power

Moventas rolls out breakthrough up-tower planetary repairs for GE fleet

TECH SPACE
Toyota view on Volkswagen scandal: don't obsess over No. 1

Pollution scam pushes VW into first quarterly loss in 15 years

Tokyo Motor Show kicks off with a spotlight on self-driving cars

Automakers win reprieve on EU pollution testing

TECH SPACE
Lighter, long-lasting batteries made from silicon

Climate Summit can't overlook China's support of global coal power

New report on energy-efficient computing

Unraveling the complex, intertwined electron phases in a superconductor

TECH SPACE
Bolivia announces plans for nuclear research complex

UK Nuclear Plans in Meltdown After Shareholder Warning

Argentina and Russia to enhance energy cooperation

Japan on track for another nuclear reactor restart

TECH SPACE
UN chief says 'no plan B or planet B' in climate talks

To reach CO2, energy goals, combine technologies with stable policies

EDF for carbon price floor

Shift from fossil fuels risks popping 'carbon bubble': World Bank

TECH SPACE
NASA/USGS Mission Helps Answer: What Is a Forest

Elephants boost tree losses in South Africa's largest savanna reserve

More rain leads to fewer trees in the African savanna

Future coastal climate not cool for redwood forests









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.