Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
Artificial Cells Act Like the Real Thing
by Staff Writers
Rehovot, Israel (SPX) Aug 21, 2014


Eyal Karzbrun, Alexandra Tayar and Prof. Roy Bar-Ziv.

Imitation, they say, is the sincerest form of flattery, but mimicking the intricate networks and dynamic interactions that are inherent to living cells is difficult to achieve outside the cell. Now, as published in Science, Weizmann Institute scientists have created an artificial, network-like cell system that is capable of reproducing the dynamic behavior of protein synthesis.

This achievement is not only likely to help gain a deeper understanding of basic biological processes, but it may, in the future, pave the way toward controlling the synthesis of both naturally-occurring and synthetic proteins for a host of uses.

The system, designed by PhD students Eyal Karzbrun and Alexandra Tayar in the lab of Prof. Roy Bar-Ziv of the Weizmann Institute's Materials and Interfaces Department, in collaboration with Prof. Vincent Noireaux of the University of Minnesota, comprises multiple compartments "etched'' onto a biochip.

These compartments - artificial cells, each a mere millionth of a meter in depth - are connected via thin capillary tubes, creating a network that allows the diffusion of biological substances throughout the system. Within each compartment, the researchers insert a cell genome - strands of DNA designed and controlled by the scientists themselves.

In order to translate the genes into proteins, the scientists relinquished control to the bacterium E. coli: Filling the compartments with E. coli cell extract - a solution containing the entire bacterial protein-translating machinery, minus its DNA code - the scientists were able to sit back and observe the protein synthesis dynamics that emerged.

By coding two regulatory genes into the sequence, the scientists created a protein synthesis rate that was periodic, spontaneously switching from periods of being "on" to "off." The amount of time each period lasted was determined by the geometry of the compartments.

Such periodic behavior - a primitive version of cell cycle events - emerged in the system because the synthesized proteins could diffuse out of the compartment through the capillaries, mimicking natural protein turnover behavior in living cells. At the same time fresh nutrients were continuously replenished, diffusing into the compartment and enabling the protein synthesis reaction to continue indefinitely.

"The artificial cell system, in which we can control the genetic content and protein dilution times, allows us to study the relation between gene network design and the emerging protein dynamics. This is quite difficult to do in a living system," says Karzbrun.

"The two-gene pattern we designed is a simple example of a cell network, but after proving the concept, we can now move forward to more complicated gene networks. One goal is to eventually design DNA content similar to a real genome that can be placed in the compartments."

The scientists then asked whether the artificial cells actually communicate and interact with one another like real cells. Indeed, they found that the synthesized proteins that diffused through the array of interconnected compartments were able to regulate genes and produce new proteins in compartments farther along the network.

In fact, this system resembles the initial stages of morphogenesis - the biological process that governs the emergence of the body plan in embryonic development.

"We observed that when we place a gene in a compartment at the edge of the array, it creates a diminishing protein concentration gradient; other compartments within the array can sense and respond to this gradient - similar to how morphogen concentration gradients diffuse through the cells and tissues of an embryo during early development.

"We are now working to expand the system and to introduce gene networks that will mimic pattern formation, such as the striped patterns that appear during fly embryogenesis," explains Tayar.

With the artificial cell system, according to Bar-Ziv, one can, in principle, encode anything: "Genes are like Lego in which you can mix and match various components to produce different outcomes; you can take a regulatory element from E. coli that naturally controls gene X, and produce a known protein; or you can take the same regulatory element but connect it to gene Y instead to get different functions that do not naturally occur in nature."

This research may, in the future, help advance the synthesis of such things as fuel, pharmaceuticals, chemicals and the production of enzymes for industrial use, to name a few.

.


Related Links
Weizmann Institute of Science
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Pitt engineer turns metal into glass
Pittsburgh PA (SPX) Aug 21, 2014
Materials scientists have long sought to form glass from pure, monoatomic metals. Scott X. Mao and colleagues did it. Their paper, "Formation of Monoatomic Metallic Glasses Through Ultrafast Liquid Quenching," was recently published online in Nature, a leading science journal. Mao, William, Kepler Whiteford Professor of Mechanical Engineering and Materials Science at the University of Pitt ... read more


TECH SPACE
Bionic Liquids from Lignin

Regulations needed to identify potentially invasive biofuel crops

Spinach could lead to alternative energy more powerful than Popeye

Biofuels benefit energy security, Secretary Moniz says

TECH SPACE
Exoskeleton technology set for Navy testing and evaluation

Russia's First Exoskeleton to Help Physically Impaired

Hitchhiking robot reaches journey's end in Canada

A self-organizing thousand-robot swarm

TECH SPACE
Real 20 per cent Renewable Energy Target would decimate industry

Scottish marine power a testament of unity, London says

Scottish government approves build of Iberdrola wind farm

U.S. Wind Inc. wins rights to wind energy offshore Maryland

TECH SPACE
France's Peugeot gets approval for China plant: report

China fines Japanese auto parts firms $200 mn for monopoly

Uber pulls into mobile dining and travel apps

How fast you drive might reveal where you are going

TECH SPACE
Stanford scientists develop a water splitter that runs on an ordinary AAA battery

Indonesia passes law to tap volcano power

Greensmith on track to integrate 4 new battery types in 2014

Researchers inspired by marine life to design camouflage systems

TECH SPACE
Fukushima operator ordered to compensate for suicide

Iran opens nuclear fuel plant

Westinghouse to Provide Finland's TVO with Advanced Reactor Internal Pumps

Canada, Kazakhstan start nuclear cooperation

TECH SPACE
London carrying energy, climate message to New Delhi

Exporting US coal to Asia could drop emissions 21 percent

Earth's resource budget for 2014 already spent: NGO

Sen. Hoeven hails 250-mile transmission line as benchmark

TECH SPACE
World's primary forests on the brink

New analysis links tree height to climate

Loss of Eastern Hemlock Affects Peak Flows after Extreme Storm Events

Girl, 4, survives 11-day ordeal in bear-infested Siberian forest




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.