Solar Energy News
ROBO SPACE
Artificial Intelligence and NASA's First Robotic Lunar Rover
During VIPER mission operations, the team plans to use AI interactively to help map out various routes for the operations team members to choose from. This AI system is called SHERPA - the System Health Enabled Real-time Planning Advisor.
Artificial Intelligence and NASA's First Robotic Lunar Rover
by Rachel Hoover
Moffett Field CA (SPX) Dec 04, 2023

When NASA's VIPER (short for Volatiles Investigating Polar Exploration Rover) lands on the surface of the Moon on a mission to better understand the environment where NASA plans to send astronauts as part of the increasingly complex Artemis missions, its journey will be guided by the human ingenuity of its human team - and several key tools that use artificial intelligence. From helping the science team choose a landing site at the lunar mountain Mons Mouton, to planning out its path, the VIPER team has developed and used artificial intelligence algorithms to help assess risk and optimize decision making.

Artificial intelligence is a wide field, and the resulting techniques are still far from the self-aware robots of science fiction. Instead, the field contributes tools to help space missions deal with some of the uncertainties that come with planning and executing a real-time mission in a challenging, largely unexplored environment.

"AI allows VIPER to be more adaptable, flexible, resilient, and efficient," said Edward Balaban, VIPER's lead for strategic planning at NASA's Ames Research Center in California's Silicon Valley. "It's a tool that allows us to use change as a strength."

These tools don't replace human input - NASA scientists design these systems in the first place, input the relevant data, and then use the AI's outputs as a baseline for mission-related decisions. During VIPER mission operations, the team plans to use AI interactively to help map out various routes for the operations team members to choose from. This AI system is called SHERPA - the System Health Enabled Real-time Planning Advisor.

Traversing the Lunar Surface
The VIPER mission will run for about 100 days after landing on Mons Mouton near the lunar South Pole. Throughout its journey, VIPER will make many stops at several science stations - sites selected for their potential to achieve the mission's science objectives. These objectives include understanding the factors that control the distribution of water on the surface of the Moon, understanding the delivery history of water to the Moon, determining the origin of lunar water and other , and determining how volatiles evolve over time after they are deposited on the surface.

How the rover moves from one of these sites to the other, and where it can find a safe place, referred to as a "safe haven," to pause while temporarily out of communications with Earth - without getting stuck in an extremely cold and dark shadow - is a complex question requiring analysis of vast amounts of data. Factors such as the Moon's rugged terrain, VIPER's needs and limits, and the potential of the various science stations all need to be considered.

SHERPA is able to process all these factors and present the VIPER team with several options while planning the rover's traverse before mission operations. It can assess the various risks of different routes by running thousands of mission simulations, and even provide contingency branches for where to go if something changes or doesn't go according to plan. But after launch, SHERPA's work won't be over - it'll also be used for real-time, dynamic problem solving, giving the VIPER team potential solutions to adjust the rover's traverse when it's presented with new scientific or operational information.

A traverse from SHERPA isn't just a one-and-done plan. The AI will provide a template that humans consider and revise. Any changes made are then run back through SHERPA to determine if it's feasible or if there are any issues. Those revisions won't be corrections in the traditional sense or enacted by default, but allow team members to make adjustments based on factors the AI may not be able to consider, such as constraints related to staffing for the team members driving the rover or operating the rover science instruments.

Another set of techniques from a subfield of AI known as temporal constraint planning helps VIPER make its to-do list, by essentially presenting an algorithm with the problem of scheduling a set of activities within a certain time.

Follow us here or @NASAAmes for a follow-up post with more details about how artificial intelligence supports NASA's VIPER mission and efforts to explore the unknown in space for the benefit of humanity.

Related Links
Volatiles Investigating Polar Exploration Rover
All about the robots on Earth and beyond!

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ROBO SPACE
Brainstorming with a bot
Upton NY (SPX) Dec 04, 2023
A researcher has just finished writing a scientific paper. She knows her work could benefit from another perspective. Did she overlook something? Or perhaps there's an application of her research she hadn't thought of. A second set of eyes would be great, but even the friendliest of collaborators might not be able to spare the time to read all the required background publications to catch up. Kevin Yager-leader of the electronic nanomaterials group at the Center for Functional Nanomaterials (CFN), ... read more

ROBO SPACE
Nigerians look to biofuel as cost of cooking gas soars

Chinese company gives leftover hotpot oil second life as jet fuel

Cheap and efficient ethanol catalyst from laser-melted nanoparticles

UK permits 'world-first' flight powered by sustainable fuels

ROBO SPACE
Artificial Intelligence and NASA's First Robotic Lunar Rover

Learn to forget? How to rein in a rogue chatbot

Trimble to provide new positioning system to Sabanto for RoboTractors

Google looks to take generative AI lead with Gemini

ROBO SPACE
UK unveils massive news windfarm investment by UAE, German firms

Wind and solar projects can profit from bitcoin mining

Winds of change? Bid to revive England's onshore sector

Drones to transport personnel and materials to offshore wind farms

ROBO SPACE
Stellantis to test electric vehicle battery swapping in Madrid

China's electric bus revolution glides on

To help robocars make moral decisions, researchers ditch the 'trolley problem'

US proposes EV tax credit rules to curb Chinese inputs

ROBO SPACE
SLAC Joins Forces with Leading Institutions to Advance Fusion Energy Research

Cost-effective electrocatalysts for cleaner hydrogen fuel production

Japanese experimental nuclear fusion reactor inaugurated

New study shows how universities are critical to emerging fusion industry

ROBO SPACE
Orano wraps up Crystal River 3 Reactor dismantling ahead of schedule

China launches world's first fourth-generation nuclear reactor

Making nuclear energy facilities easier to build and transport

Framatome backs Global Morpho Pharma's high-capacity Lutetium-177 separation process

ROBO SPACE
'Unabated': a word to split the world at COP28

COP28 pledges meet only 30% of needed energy emission cuts: IEA

'Climate conscious' banks lend more to polluters; Denmark wants 90% cut by 2040

France adopts corporate sustainability reporting

ROBO SPACE
Minding the gap on tropical forest carbon

Rent-a-tree firm helps Londoners have a sustainable Christmas

Deforestation hits record low in Brazilian Amazon in November

'It destroys everything': Amazon community fights carbon credit project

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.