Solar Energy News  
TIME AND SPACE
Astronomers discover 83 supermassive black holes in early universe
by Staff Writers
Tokyo, Japan (SPX) Mar 14, 2019

An artist impression of a quasar. A SMBH sits at the center, and the gravitational energy of material accreting onto the SMBH is released as light. (Credit: Yoshiki Matsuoka)

A team of astronomers has discovered 83 quasars powered by supermassive black holes (SMBHs) in the early universe. This increases the number of black holes known at that epoch considerably, and reveals, for the first time, how common SMBHs were early in the universe's history.

Supermassive black holes are found at the centers of galaxies, and have masses millions or even billions of times that of the Sun. While they are prevalent in the modern universe, it is unclear when they first formed, and how many existed in the early universe.

We cannot observe black holes directly, but when a large quantity of matter falls into a SMBH it releases energy as a bright light that can be seen from across the universe. This phenomenon is known as a quasar.

The research team led by Yoshiki Matsuoka (Ehime University) used the Subaru Telescope to look for quasars in the distant universe. The most distant quasar discovered by the team is 13.05 billion light-years away, which is tied for the second most distant SMBH ever discovered.

Because of the finite speed of light, the light emitted from these objects located 13 billion light-years away must have traveled for 13 billion years to reach us. Thus, the light provides an image of how things looked when it was emitted 13 billion years ago, when the universe was only five percent of its current age.

The survey revealed 83 previously unknown very distant quasars; together with the 17 quasars already known in the survey region. Previous studies have been sensitive only to the most luminous quasars, and thus the most massive black holes.

The new discoveries probe the population of SMBH with masses characteristic of the most common ones seen in the modern universe, and thus shed light on their origin. The survey has found that the average spacing between supermassive black holes is a billion light-years.

"The quasars we discovered will be an interesting subject for further follow-up observations with current and future facilities," said Matsuoka. "We will also learn about the formation and early evolution of SMBHs, by comparing the measured number density and luminosity distribution with predictions from theoretical models."

Research Report: "Discovery of the First Low-luminosity Quasar at z > 7"


Related Links
National Astronomical Observatory Of Japan
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Can Entangled Qubits Be Used to Probe Black Holes
Berkeley CA (SPX) Mar 11, 2019
Physicists have used a seven-qubit quantum computer to simulate the scrambling of information inside a black hole, heralding a future in which entangled quantum bits might be used to probe the mysterious interiors of these bizarre objects. Scrambling is what happens when matter disappears inside a black hole. The information attached to that matter - the identities of all its constituents, down to the energy and momentum of its most elementary particles - is chaotically mixed with all the other ma ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Engineered microbe may be key to producing plastic from plants

Turning algae into fuel

Capturing bacteria that eat and breathe electricity

Climate rewind: Scientists turn carbon dioxide back into coal

TIME AND SPACE
How intelligent is artificial intelligence?

Mathematics of sea slug movement points to future robots

Ultra-low power chips help make small robots more capable

Will artificial intelligence be the future of music?

TIME AND SPACE
Improved hybrid models for multi-step wind speed forecasting

UK targets surge in offshore wind power

Ingeteam commissioned over 4GW of wind converters in 2018

Sulzer Schmid's new technology platform slashes cost of drone-based rotor blade inspections

TIME AND SPACE
Fiat Chrysler to recall 863,000 autos over emissions

$20 million settlement reached in Uber driver lawsuit

Tesla changes course, will keep more showrooms open

Tesla gets $520 mn funding for first Chinese plant

TIME AND SPACE
Fusion science and astronomy collaboration enables investigation of the origin of heavy elements

Testing space batteries to destruction for cleaner skies

Powering devices - with a desk lamp?

Green Hydrogen to become affordable alternative by 2035, DNV GL study finds

TIME AND SPACE
RWE looks to 2019 to complete transformation

Team solves a beta-decay puzzle with advanced nuclear models

Fukushima evacuees resist return as 'Reconstruction Olympics' near

Lithuania asks Belarus to convert nuclear plant to gas

TIME AND SPACE
CO2 emissions in developed economies fall due to decreasing fossil fuel and energy use

S.Africa imposes severe power cuts ahead of election

To conserve energy, AI clears up cloudy forecasts

Keeping the lights on during extreme cold snaps takes investments and upgrades

TIME AND SPACE
Billions pledged to halt Africa's forest loss

Largest carbon dioxide sink in renewable forests

Gabon seizes haul of 'sacred' wood: NGO

Peru opens military base to protect Amazon from deforestation









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.