Solar Energy News  
STELLAR CHEMISTRY
Astronomy prof, student predict explosion that will change the night sky
by Staff Writers
Grand Rapids, MI (SPX) Jan 17, 2017


Daniel Van Noord '14 and Larry Molnar predict explosion that will change the night sky.

Calvin College professor Larry Molnar and his students along with colleagues from Apache Point Observatory (Karen Kinemuchi) and the University of Wyoming (Henry Kobulnicky) are predicting a change to the night sky that will be visible to the naked eye. At 10:15 a.m. CST on Friday, January 6, a press briefing will be held at the Gaylord Texan Resort and Convention Center (Austin 5) where Molnar will share how a prediction he made in 2015 of a binary star merging in the near future is progressing from theory to reality.

"It's a one-in-a-million chance that you can predict an explosion," Molnar said of his bold prognostication. "It's never been done before."

Molnar's prediction is that a binary star (two stars orbiting each other) he is monitoring will merge and explode in 2022, give or take a year; at which time the star will increase its brightness ten thousand fold, becoming one of the brighter stars in the heavens for a time. The star will be visible as part of the constellation Cygnus, and will add a star to the recognizable Northern Cross star pattern.

Calvin communication arts and sciences professor Sam Smartt is producing a documentary on the nature of the scientific discovery, the development of undergraduate researchers and the power of "small science." Watch the trailer.

A question leads to exploration
Molnar's exploration into the star known as KIC 9832227 began back in 2013. He was attending an astronomy conference when fellow astronomer Karen Kinemuchi presented her study of the brightness changes of the star, which concluded with a question: Is it pulsing or is it a binary?

Also present at the conference was then Calvin College student Daniel Van Noord '14, Molnar's research assistant. He took the question as a personal challenge and made some observations of the star with the Calvin observatory.

"He looked at how the color of the star correlated with brightness and determined it was definitely a binary," said Molnar. "In fact, he discovered it was actually a contact binary, in which the two stars share a common atmosphere, like two peanuts sharing a single shell.

"From there Dan determined a precise orbital period from Kinemuchi's Kepler satellite data (just under 11 hours) and was surprised to discover that the period was slightly less than that shown by earlier data" Molnar continued.

This result brought to mind work published by astronomer Romuald Tylenda, who had studied the observational archives to see how another star (V1309 Scorpii) had behaved before it exploded unexpectedly in 2008 and produced a red nova (a type of stellar explosion only recently recognized as distinct from other types). The pre-explosion record showed a contact binary with an orbital period decreasing at an accelerating rate. For Molnar, this pattern of orbital change was a "Rosetta stone" for interpreting the new data.

Making a bold prediction
Upon observing the period change to continue through 2013 and 2014, Molnar presented orbital timing spanning 15 years at the January 2015 meeting of the American Astronomical Society, making the prediction that KIC 9832227 may be following in the footsteps of V1309 Scorpii. Before taking the hypothesis too seriously, though, one needed to rule out other, more mundane, interpretations of the period change.

In the two years since that meeting, Molnar and his team have performed two strong observational tests of the alternative interpretations. First, spectroscopic observations ruled out the presence of a companion star with an orbital period greater than 15 years. Second, the rate of orbital period decrease of the past two years followed the prediction made in 2015 and now exceeds that shown by other contact binaries.

Moving from theory to reality
"Bottom line is we really think our merging star hypothesis should be taken seriously right now and we should be using the next few years to study this intensely so that if it does blow up we will know what led to that explosion," said Molnar.

To that end, Molnar and colleagues will be observing KIC 9832227 in the next year over the full range of wavelengths: using the Very Large Array, the Infrared Telescope Facility, and the XMM-Newton spacecraft to study the star's radio, infrared and X-ray emission, respectively.

"If Larry's prediction is correct, his project will demonstrate for the first time that astronomers can catch certain binary stars in the act of dying, and that they can track the last few years of a stellar death spiral up to the point of final, dramatic explosion," said Matt Walhout, dean for research and scholarship at Calvin College.

Watching in wonder
"The project is significant not only because of the scientific results, but also because it is likely to capture the imagination of people on the street," said Walhout. "If the prediction is correct, then for the first time in history, parents will be able to point to a dark spot in the sky and say, 'Watch, kids, there's a star hiding in there, but soon it's going to light up.'"

Molnar says that this is the beginning of a story that will unfold over the next several years, and people of all levels can participate.

"The orbital timing can be checked by amateur astronomers," said Molnar. "It's amazing the equipment amateur astronomers have these days. They can measure the brightness variations with time of this 12th magnitude star as it eclipses and see for themselves if it is continuing on the schedule we are predicting or not."


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Calvin College
Stellar Chemistry, The Universe And All Within It






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Photons Struggle to Escape Distant Galaxies
London, UK (SPX) Jan 11, 2017
Astronomers led by David Sobral and Jorryt Matthee, of the Universities of Lancaster in the UK and Leiden in the Netherlands, respectively, have discovered giant halos around early Milky Way type galaxies, made of photons (elementary particles of light) that have struggled to escape them. The team reports its findings in the journal Monthly Notices of the Royal Astronomical Society. In ord ... read more


STELLAR CHEMISTRY
Iowa State engineer helps journal highlight how pyrolysis can advance the bioeconomy

Handheld sensor unit determines biofuel content of diesel blends

Dual-purpose biofuel crops could extend production, increase profits

Species diversity reduces chances of crop failure in algal biofuel systems

STELLAR CHEMISTRY
Textron begins testing Common Unmanned Surface Vehicle

Robots need 'kill switches', warn Euro MPs

Cheery robots may make creepy companions, but could be intelligent assistants

Amazon Alexa virtual assistant shines at tech show

STELLAR CHEMISTRY
New York sets bar high for offshore wind

DONG Energy makes wind energy debut

The answer is blowing in the wind

French power group aims to double wind capacity

STELLAR CHEMISTRY
China 2016 auto sales surge at fastest in three years

US deal won't end 'dieselgate' pain for Volkswagen

NAVYA Self-driving shuttle goes to work in Las Vegas

New technology will cut plug-in hybrid fuel consumption by one third

STELLAR CHEMISTRY
UK-Led Hydrogen Fuel Project Promises to Provide Ultra-Clean Air in China

Scientists discover a molecular motor has a 'gear' for directional switching

Rolling out an e-sticker revolution

Tenfold jump in green tech needed to meet global emissions targets

STELLAR CHEMISTRY
France sells off Engie stake to finance Areva rescue

UK asks regulators to assess Chinese nuclear reactor

EU clears French rescue of troubled nuclear firm Areva

Controversial nuclear power plant near New York to close

STELLAR CHEMISTRY
China to build $1.5 billion power line across Pakistan

MIT Energy Initiative report provides guidance for evolving electric power sector

Toward energy solutions for northern regions

Energy-hungry Asia slowing down, lender says

STELLAR CHEMISTRY
Philippine minister says Dora can't explore pristine Palawan

Why are Australia's shrublands like 'knee-high tropical rainforests'?

Microbes rule in 'knee-high tropical rainforests'

Study: Trees with thicker bark are more resistant to fire









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.