Solar Energy News  
STELLAR CHEMISTRY
Astrophysicists explain the mysterious behavior of cosmic rays
by Staff Writers
Moscow (SPX) Aug 21, 2017


X-ray and gamma-ray emission bubbles in the Milky Way.

A team of scientists from Russia and China has developed a model which explains the nature of high-energy cosmic rays (CRs) in our Galaxy. These CRs have energies exceeding those produced by supernova explosions by one or two orders of magnitude. The model focuses mainly on the recent discovery of giant structures called Fermi bubbles.

One of the key problems in the theory of the origin of cosmic rays (high-energy protons and atomic nuclei) is their acceleration mechanism. The issue was addressed by Vitaly Ginzburg and Sergei Syrovatsky in the 1960s when they suggested that CRs are generated during supernova (SN) explosions in the Galaxy.

A specific mechanism of charged particle acceleration by SN shock waves was proposed by Germogen Krymsky and others in 1977. Due to the limited lifetime of the shocks, it is estimated that the maximum energy of the accelerated particles cannot exceed 1014-1015 eV (electronvolts).

The question arises of how to explain the nature of particles with energies above 1015 eV. A major breakthrough in researching the acceleration processes of such particles came when the Fermi Gamma-ray Space Telescope detected two gigantic structures emitting radiation in gamma-ray band in the central area of the Galaxy in November 2010.

The discovered structures are elongated and are symmetrically located in the Galactic plane perpendicular to its center, extending 50,000 light-years, or roughly half of the diameter of the Milky Way disk. These structures became known as Fermi bubbles. Later, the Planck telescope team discovered their emission in the microwave band.

The nature of Fermi bubbles is still unclear, however the location of these objects indicates their connection to past or present activity in the center of the galaxy, where a central black hole of 106 solar masses is believed to be located.

Modern models relate the bubbles to star formation and/or an energy release in the Galactic center as a result of tidal disruption of stars during their accretion onto a central black hole. The bubbles are not considered to be unique phenomena observed only in the Milky Way and similar structures can be detected in other galactic systems with active nuclei.

Dmitry Chernyshov (MIPT graduate), Vladimir Dogiel (MIPT staff member) and their colleagues from Hong Kong and Taiwan have published a series of papers on the nature of Fermi bubbles. They have shown that X-ray and gamma-ray emission in these areas is due to various processes involving relativistic electrons accelerated by shock waves resulting from stellar matter falling into a black hole.

In this case, the shock waves should accelerate both protons and nuclei. However, in contrast to electrons, relativistic protons with bigger masses hardly lose their energy in the Galactic halo and can fill up the entire volume of the galaxy. The authors of the paper suggest that giant Fermi bubbles shock fronts can re-accelerate protons emitted by SN to energies greatly exceeding 1015 eV.

Analysis of cosmic ray re-acceleration showed that Fermi bubbles may be responsible for the formation of the CR spectrum above the "knee" of the observed spectrum, i.e., at energies greater than 3+ 1015 eV. To put this into perspective, the energy of accelerated particles in the Large Hadron Collider is also ~1015 eV.

"The proposed model explains the spectral distribution of the observed CR flux. It can be said that the processes we described are capable of re-accelerating galactic cosmic rays generated in supernova explosions. Unlike electrons, protons have a significantly greater lifetime, so when accelerated in Fermi bubbles, they can fill up the volume of the Galaxy and be observed near the Earth.

"Our model suggests that the cosmic rays containing high-energy protons and nuclei with energy lower than 1015 eV (below the energy range of the observed spectrum's "knee"), were generated in supernova explosions in the Galactic disk. Such CRs are re-accelerated in Fermi bubbles to energies over 1015 eV (above the "knee"). The final cosmic ray distribution is shown on the spectral diagram," says Vladimir Dogiel.

The researchers have proposed an explanation for the peculiarities in the CR spectrum in the energy range from 3+ 1015 to 1018 eV.

The scientists have proven that particles produced during the SN explosions and which have energies lower than 3+ 1015 eV experience re-acceleration in Fermi bubbles when they move from the galactic disk to the halo.

Reasonable parameters of the model describing the particles' acceleration in Fermi bubbles can explain the nature of the spectrum of cosmic rays above 3+ 1015 eV. The spectrum below this range remains undisturbed. Thus, the model is able to produce spectral distribution of cosmic rays that is identical to the one observed.

Research paper

STELLAR CHEMISTRY
New mission going to the space station to explore mysteries of 'cosmic rain'
Greenbelt MD (SPX) Aug 14, 2017
A new experiment set for an Aug. 14 launch to the International Space Station will provide an unprecedented look at a rain of particles from deep space, called cosmic rays, that constantly showers our planet. The Cosmic Ray Energetics And Mass mission destined for the International Space Station (ISS-CREAM) is designed to measure the highest-energy particles of any detector yet flown in space. ... read more

Related Links
Moscow Institute of Physics and Technology
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Potato waste processing may be the road to enhanced food waste conversion

Mexico's prickly pear cactus: energy source of the future?

Additive selectively converts CO2 to multicarbon fuels

New light-activated catalyst grabs CO2 to make ingredients for fuel

STELLAR CHEMISTRY
DARPA assured autonomy seeks to guarantee safety of learning-enabled autonomous systems

Northrop Grumman to demonstrate autonomous networked unmanned vehicles

AI revolution will be all about humans, says Siri trailblazer

SSL and NASA complete preliminary design review for on-orbit robotic servicing spacecraft

STELLAR CHEMISTRY
Night vision for bird- and bat-friendly offshore wind power

Wind energy blows up storm of controversy in Mexico

Norway's Statoil reshapes hold of giant wind farm off the British coast

Vertical axis wind turbines can offer cheaper electricity for urban and suburban areas

STELLAR CHEMISTRY
Fiat joins BMW-led group to develop driverless cars

Uber's ousted CEO calls investor lawsuit unfounded

Uber bows to Philippines suspension after show of defiance

Uber settles complaint over data protection for riders, drivers

STELLAR CHEMISTRY
Updated computer code improves prediction of particle motion in plasma experiments

A quick and easy way to shut down instabilities in fusion devices

IV and cellular fluids power flexible batteries

A battery-inspired strategy for carbon fixation

STELLAR CHEMISTRY
Analysis highlights failings in US's advanced nuclear program

Clashes at anti-nuclear demo in France

RWE optimistic for 2017, boosted by nuclear tax refund

The Roadmap for Increased Safety and Viability of Nuclear Power Plants

STELLAR CHEMISTRY
India must rethink infrastructure needs for 100 new 'smart' cities to be sustainable

Allowable 'carbon budget' most likely overestimated

Sparkling springs aid quest for underground heat energy sources

Google's 'moonshot' factory spins off geothermal unit

STELLAR CHEMISTRY
Storms felled record number of trees in Poland: officials

Brazilian tribes celebrate court ruling on land rights

Drought-affected trees die from hydraulic failure and carbon starvation

Humans have been altering tropical forests for at least 45,000 years









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.