Solar Energy News  
NANO TECH
Atomic scale pipes available on demand and by design
by Staff Writers
Manchester, UK (SPX) Sep 13, 2016


File image.

Materials containing tiny capillaries and cavities are widely used in filtration, separation and many other technologies, without which our modern lifestyle would be impossible. Those materials are usually found by luck or accident rather than design. It has been impossible to create artificial capillaries with atomic-scale precision.

Now a Manchester group led by postdoctoral researcher Radha Boya and Nobel laureate Andre Geim show how to make the impossible possible, as reported in Nature.

The new technology is elegant, adaptable and strikingly simple. In fact, it is a kind of antipode of the famous material graphene. When making graphene, people often take a piece of graphite and use Scotch tape to extract a single atomic plane of carbon atoms, graphene. The remaining graphite is discarded.

In this new research, Manchester scientists similarly extracted a strip of graphene from graphite, but discarded the graphene and focused on what was left: an ultra-thin cavity within the graphite crystal.

Such atomic scale cavities can be made from various materials to achieve not only a desired size but also to choose properties of capillary walls. They can be atomically smooth or rough, hydrophilic or hydrophobic, insulating or conductive, electrically charged or neutral; the list goes on.

The voids can be made as cavities (to confine various substances) or open-ended tunnels (to transport different gases and liquids), which is of huge interest for fundamental research and many applications. It is limited only by imagination what such narrow tunnels with designer properties can potentially do for us.

Properties of materials at this truly atomic scale are expected to be quite different from those we are familiar with in our macroscopic world. To demonstrate that this is the case of their atomic-scale voids, the Manchester group tested how water runs through those ultra-narrow pipes.

To everyone's surprise, they found water to flow with little friction and at high speed, as if the channels were many thousands times wider than they actually are.

Radha Boya commented 'This is an entirely new type of nanoscale systems. Such capillaries were never imagined, even in theory. No one thought that this degree of accuracy in design could be possible. New filtration, desalination, gas separation technologies are kind of obvious directions but there are so many others to explore'.

Sir Andre added 'Making something useful out of an empty space is certainly cute. Finding that this space offers so much of new science is flabbergasting. Even with hindsight, I did not expect the idea to work so well. There are myriads of possibilities for research and development, which now need to be looked at. We are stunned by the choice.'

Research paper: "Molecular transport through capillaries made with atomic-scale precision"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Manchester
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Electron beam microscope directly writes nanoscale features in liquid with metal ink
Oak Ridge TN (SPX) Sep 13, 2016
Scientists at the Department of Energy's Oak Ridge National Laboratory are the first to harness a scanning transmission electron microscope (STEM) to directly write tiny patterns in metallic "ink," forming features in liquid that are finer than half the width of a human hair. The automated process is controlled by weaving a STEM instrument's electron beam through a liquid-filled cell to sp ... read more


NANO TECH
Tapping the unused potential of photosynthesis

Fish 'biowaste' converted to piezoelectric energy harvesters

Body heat as a power source

Croatian Pig Farm Uses Synergies to Generate Energy

NANO TECH
Team of robots learns to work together, without colliding

Stanford-hosted study examines how AI might affect urban life in 2030

Third European Rover Challenge Kicks Off in Poland

Scientists attempt to teach robots human values

NANO TECH
Experts anticipate significant continued reductions in wind energy costs

Statoil complements portfolio with more wind

Super-tall wind turbines installed offshore Britain

British low-carbon target in doubt

NANO TECH
Testing the driverless Uber -- first nerves, and then acceptance

One year on, can Volkswagen leave 'dieselgate' behind?

Uber launches groundbreaking driverless car service

The perfect car, according to science

NANO TECH
Scientists move step closer to solving fusion plasma dilemma

Fuel cell membrane patented by Sandia outperforms market

Proton diffusion discovery a boost for fuel cell technologies

A first for direct-drive fusion

NANO TECH
Britain approves Hinkley Point nuclear deal

Is nuclear crucial to climate change targets?

Hinkley Point: a huge nuclear gamble for France

Work starts on two new Iran nuclear reactors

NANO TECH
Europe ups energy security ante

NREL releases updated baseline of cost and performance data for electricity generation technologies

Chinese giant to buy Pakistani power company for $1.6 bn

Economy of energy-hungry India may face headwinds

NANO TECH
Eastern forests use up nitrogen in soil during earlier, greener springs

In eastern Tibetan forest, signs of tree growth amid climate change

World's largest reforestation program overlooks wildlife

Voracious Asian jumping worms strip forest floor and flood soil with nutrients









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.