Solar Energy News  
SPACE TRAVEL
Autonomous interplanetary travel one step closer to reality
by Staff Writers
Leicester (SPX) Aug 08, 2016


File image.

An accurate method for spacecraft navigation takes a leap forward today as the National Physical Laboratory (NPL) and the University of Leicester publish a paper that reveals a spacecraft's position in space in the direction of a particular pulsar can be calculated autonomously, using a small X-ray telescope on board the craft, to an accuracy of 2km.

The method uses X-rays emitted from pulsars, which can be used to work out the position of a craft in space in 3D to an accuracy of 30 km at the distance of Neptune. Pulsars are dead stars that emit radiation in the form of X-rays and other electromagnetic waves.

For a certain type of pulsar, called 'millisecond pulsars', the pulses of radiation occur with the regularity and precision of an atomic clock and could be used much like GPS in space.

The paper, published in Experimental Astronomy, details simulations undertaken using data, such as the pulsar positions and a craft's distance from the Sun, for a European Space Agency feasibility study of the concept.

The simulations took these data and tested the concept of triangulation by pulsars with current technology (an X-ray telescope designed and developed by the University of Leicester) and position, velocity and timing analysis undertaken by NPL. This generated a list of usable pulsars and measurements of how accurately a small telescope can lock onto these pulsars and calculate a location.

Although most X-ray telescopes are large and would allow higher accuracies, the team focused on technology that could be small and light enough to be developed in future as part of a practical spacecraft subsystem. The key findings are:

+ At a distance of 30 astronomical units - the approximate distance of Neptune from the Earth - an accuracy of 2km or 5km can be calculated in the direction of a particular pulsar, called PSR B1937+21, by locking onto the pulsar for ten or one hours respectively

+ By locking onto three pulsars, a 3D location with an accuracy of 30km can be calculated

This technique is an improvement on the current navigation methods of the ground-based Deep Space Network (DSN) and European Space Tracking (ESTRACK) network as it:

+ Can be autonomous with no need for Earth contact for months or years, if an advanced atomic clock is also on the craft. ESTRACK and DSN can only track a small number of spacecraft at a time, putting a limit on the number of deep space manoeuvres they can support for different spacecraft at any one time.

+ In some scenarios, can take less time to estimate a location. ESTRACK and DSN are limited by the time delay between the craft and Earth which can be up to several hours for a mission at the outer planets and even longer outside the solar system.

Dr Setnam Shemar, Senior Research Scientist, NPL, said: "Our capability to explore the solar system has increased hugely over the past few decades; missions like Rosetta and New Horizons are testament to this. Yet how these craft navigate will in future become a limiting factor to our ambitions. The cost of maintaining current large ground-based communications systems based on radio waves is high and they can only communicate with a small number of craft at a time.

Using pulsars as location beacons in space, together with a space atomic clock, allows for autonomy and greater capability in the outer solar system. The use of these dead stars in one form or another has the potential to become a new method for navigating in deep space and, in time, beyond the solar system."

Dr John Pye, Space Research Centre Manager, University of Leicester, concludes: "Up until now, the concept of pulsar-based navigation has been seen just as that - a concept. This simulation uses technology in the real world and proves its capabilities for this task.

Our X-ray telescope can be feasibly launched into space due to its low weight and small size; indeed, it will be part of a mission to Mercury in 2018. NPL's timing analysis capability has been developed over many years due to its long heritage in atomic clocks. We are entering a new era of space exploration as we delve deeper into our solar system, and this paper lays the foundations for a potential new technology that will get us there."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Leicester
Space Tourism, Space Transport and Space Exploration News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SPACE TRAVEL
Tile Bonding Begins for Orion's First Mission Atop Space Launch System Rocket
Kennedy Space Center FL (SPX) Jul 29, 2016
A crucial part of preparing NASA's next Orion spacecraft for flight now is underway. Technicians recently began the process of bonding thermal protection system (TPS) tiles to panels that will be installed on Orion. The tiles will protect the spacecraft from the searing heat of re-entry when it returns from deep space missions. The first integrated mission of NASA's Space Launch System (SL ... read more


SPACE TRAVEL
Patented bioelectrodes have electrifying taste for waste

Bioenergy decisions involve wildlife habitat and land use trade-offs

Novel 'repair system' discovered in algae may yield new tools for biotechnology

Biological wizardry ferments carbon monoxide into biofuel

SPACE TRAVEL
First wave-propelled robot swims, crawls and climbs using a single, small motor

New robot overcomes obstacles

New remote-controlled microrobots for medical operations

SSL to provide robotic arms to DARPA for satellite servicing

SPACE TRAVEL
Offshore wind the next big thing, industry group says

France's EDF buys Chinese wind energy firm

Scotland commits $26M for low-carbon economy

More wind power added to French grid

SPACE TRAVEL
Tesla loss widens as company works to speed production

German state Bavaria to sue VW over pollution scandal

Ride-share battle ends with Didi buying Uber China operations

VW gets preliminary approval for US emissions settlement

SPACE TRAVEL
Chemists create vitamin-driven battery

More power to you

New catalyst for hydrogen production

Researchers printed energy-producing photographs

SPACE TRAVEL
Tiny creatures prompt Australia to reject uranium mine

France's EDF 'knew in advance' about British nuclear plan delay

UK nuclear project delay is 'bonkers': trade union

France's EDF backs nuclear plan but UK delays

SPACE TRAVEL
ORNL-led study analyzes electric grid vulnerabilities in extreme weather areas

New MIT system can identify how much power is being used by each device in a household

Carbon-financed cookstove fails to deliver hoped-for benefits in the field

Sweden's 100 percent carbon-free emissions challenge

SPACE TRAVEL
The missing link in carbon accounting

Rainforest greener during 'dry' season

New model is first to predict tree growth in earliest stages of tree life

Effects of past tropical deforestation will be felt for years to come









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.