Bacteria-powered solar cell converts light to energy, even under overcast skies by Staff Writers Vancouver, Canada (SPX) Jul 12, 2018
University of British Columbia researchers have found a cheap, sustainable way to build a solar cell using bacteria that convert light to energy. Their cell generated a current stronger than any previously recorded from such a device, and worked as efficiently in dim light as in bright light. This innovation could be a step toward wider adoption of solar power in places like British Columbia and parts of northern Europe where overcast skies are common. With further development, these solar cells - called "biogenic" because they are made of living organisms - could become as efficient as the synthetic cells used in conventional solar panels. "Our solution to a uniquely B.C. problem is a significant step toward making solar energy more economical," said Vikramaditya Yadav, a professor in UBC's department of chemical and biological engineering who led the project. Solar cells are the building blocks of solar panels. They do the work of converting light into electrical current. Previous efforts to build biogenic solar cells have focused on extracting the natural dye that bacteria use for photosynthesis. It's a costly and complex process that involves toxic solvents and can cause the dye to degrade. The UBC researchers' solution was to leave the dye in the bacteria. They genetically engineered E. coli to produce large amounts of lycopene - a dye that gives tomatoes their red-orange colour and is particularly effective at harvesting light for conversion to energy. The researchers coated the bacteria with a mineral that could act as a semiconductor, and applied the mixture to a glass surface. With the coated glass acting as an anode at one end of their cell, they generated a current density of 0.686 milliamps per square centimetre - an improvement on the 0.362 achieved by others in the field. "We recorded the highest current density for a biogenic solar cell," said Yadav. "These hybrid materials that we are developing can be manufactured economically and sustainably, and, with sufficient optimization, could perform at comparable efficiencies as conventional solar cells." The cost savings are difficult to estimate, but Yadav believes the process reduces the cost of dye production to about one-tenth of what it would be otherwise. The holy grail, Yadav said, would be finding a process that doesn't kill the bacteria, so they can produce dye indefinitely. He added that there are other potential applications for these biogenic materials in mining, deep-sea exploration and other low-light environments. The research has been published in the most recent edition of the journal Small
Material could help windows both power your home and control its temperature Washington DC (SPX) Jul 12, 2018 Environmentally friendly building trends have boosted the popularity of window coatings that keep heating and cooling costs down by blocking out unneeded parts of sunlight. They have also inspired scientists and engineers to create thin, see-through solar cells to turn windows into miniature electricity generators. Researchers in China have gone a step further and combined these two functions into one window-compatible material that could double the energy efficiency of an average household. Their ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |