Subscribe free to our newsletters via your
. Solar Energy News .




NANO TECH
Bacterial nanowires: Not what we thought they were
by Staff Writers
Los Angeles CA (SPX) Aug 21, 2014


Moh El-Naggar served as corresponding author of the study. Image courtesy Matt Meindl.

For the past 10 years, scientists have been fascinated by a type of "electric bacteria" that shoots out long tendrils like electric wires, using them to power themselves and transfer electricity to a variety of solid surfaces.

A team led by scientists at USC has turned the study of these bacterial nanowires on its head, discovering that the key features in question are not pili, as previously believed, but rather are extensions of the bacteria's outer membrane equipped with proteins that transfer electrons, called "cytochromes."

Scientists had long suspected that bacterial nanowires were pili - Latin for "hair" - which are hair-like features common on other bacteria, allowing them to adhere to surfaces and even connect to one another.

Given the similarity of shape, it was easy to believe that nanowires were pili. But Moh El-Naggar, assistant professor at the USC Dornsife College of Letters, Arts and Sciences, says he was always careful to avoid saying that he knew for sure that's what they were.

"The pili idea was the strongest hypothesis, but we were always cautious because the exact composition and structure were very elusive. Then we solved the experimental challenges and the hard data took us in a completely different direction. I have never been happier about being wrong. In many ways, it turned out to be an even cleverer way for bacteria to power themselves," said El-Naggar, corresponding author of the study, who was named a Popular Science Brilliant 10 researcher in 2012 for his pioneering work with bacterial nanowires.

This latest study will be published online by the Proceedings of the National Academy of Sciences on August 18.

Scientists from USC collaborated with colleagues from Penn State, the University of Wisconsin-Milwaukee, Pacific Northwest National Laboratory, and Rensselaer Polytechnic Institute on the research.

The first clue came from tracking the genes of the bacteria. During the formation of nanowires, scientists noted an increase in the expression of electron transport genes, but no corresponding increase in the expression of pilin genes.

Challenged by this evidence of what nanowires weren't, the team next needed to figure out what they actually were. El-Naggar credits Sahand Pirbadian, USC graduate student, with devising an ingenious yet simple strategy to make the discovery.

By depriving the bacteria of oxygen, the researchers were able to force the bacteria to stretch out their nanowires on command, allowing the process to be observed in real time. And by staining the bacterial membrane, periplasm, cytoplasm, and specific proteins, researchers were able to take video of the nanowires reaching out - confirming that they were based on membrane, and not pili at all.

The process isn't as simple as it sounds. Generating videos of the nanowires stretching out required new methods to simultaneously label multiple features, keep a camera focused on the wriggling bacteria, and combine the optical techniques with atomic force microscopy to gain higher resolution.

"It took us about a year just to develop the experimental set-up and figure out the right conditions for the bacteria to produce nanowires," Pirbadian said.

"We had to go back and re-examine some older experiments and rethink what we knew about the organism. Once we were able to induce nanowire growth, we started analyzing their composition and structure, which took another year of work. But it was well worth the effort because the outcome was very surprising - but in hindsight made a lot of sense."

Understanding the way these electric bacteria work has applications well beyond the lab. Such creatures have the potential to address some of the big questions about the nature of life itself, including what types of lifeforms we might find in extreme environments, like space. In addition, this research has the potential to inform the creation of living, microbial circuits - forming the foundation of hybrid biological-synthetic electronic devices.

This research was funded at USC by the U.S. Department of Energy and Air Force Office of Scientific Research and made possible by facilities at the USC Centers of Excellence in NanoBioPhysics and Electron Microsopy and Microanalysis.

.


Related Links
University of Southern California
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Sun's activity influences natural climate change
Lund, Sweden (SPX) Aug 19, 2014
For the first time, a research team has been able to reconstruct the solar activity at the end of the last ice age, around 20,000-10,000 years ago, by analysing trace elements in ice cores in Greenland and cave formations from China. During the last glacial maximum, Sweden was covered in a thick ice sheet that stretched all the way down to northern Germany and sea levels were more than 100 ... read more


NANO TECH
Bionic Liquids from Lignin

Regulations needed to identify potentially invasive biofuel crops

Spinach could lead to alternative energy more powerful than Popeye

Biofuels benefit energy security, Secretary Moniz says

NANO TECH
Exoskeleton technology set for Navy testing and evaluation

A self-organizing thousand-robot swarm

Russia's First Exoskeleton to Help Physically Impaired

Hitchhiking robot reaches journey's end in Canada

NANO TECH
Scottish marine power a testament of unity, London says

Scottish government approves build of Iberdrola wind farm

U.S. Wind Inc. wins rights to wind energy offshore Maryland

Bidding starts for wind energy offshore Maryland

NANO TECH
China fines Japanese auto parts firms $200 mn for monopoly

EV consumers better off with a range under 100 miles

Uber pulls into mobile dining and travel apps

How fast you drive might reveal where you are going

NANO TECH
Researchers inspired by marine life to design camouflage systems

Stanford scientists develop a water splitter that runs on an ordinary AAA battery

Greensmith on track to integrate 4 new battery types in 2014

Asian inventions dominate energy storage systems

NANO TECH
Iran opens nuclear fuel plant

Westinghouse to Provide Finland's TVO with Advanced Reactor Internal Pumps

Canada, Kazakhstan start nuclear cooperation

EDF Energy says shuts down nuclear reactors in Britain

NANO TECH
Exporting US coal to Asia could drop emissions 21 percent

London carrying energy, climate message to New Delhi

Earth's resource budget for 2014 already spent: NGO

Sen. Hoeven hails 250-mile transmission line as benchmark

NANO TECH
World's primary forests on the brink

New analysis links tree height to climate

Loss of Eastern Hemlock Affects Peak Flows after Extreme Storm Events

Girl, 4, survives 11-day ordeal in bear-infested Siberian forest




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.