Solar Energy News  
SPACE MEDICINE
Being in space destroys more red blood cells
by Staff Writers
Ottawa, Canada (SPX) Jan 14, 2022

Astronaut Tim Peake's first blood draw completed in space. The sample was taken as part of the MARROW experiment.

A world-first study has revealed how space travel can cause lower red blood cell counts, known as space anemia. Analysis of 14 astronauts showed their bodies destroyed 54 percent more red blood cells in space than they normally would on Earth, according to a study published in Nature Medicine.

"Space anemia has consistently been reported when astronauts returned to Earth since the first space missions, but we didn't know why," said lead author Dr. Guy Trudel, a rehabilitation physician and researcher at The Ottawa Hospital and professor at the University of Ottawa. "Our study shows that upon arriving in space, more red blood cells are destroyed, and this continues for the entire duration of the astronaut's mission."

Before this study, space anemia was thought to be a quick adaptation to fluids shifting into the astronaut's upper body when they first arrived in space. Astronauts lose 10 percent of the liquid in their blood vessels this way. It was thought astronauts rapidly destroyed 10 percent of their red blood cells to restore the balance, and that red blood cell control was back to normal after 10 days in space.

Instead, Dr. Trudel's team found that the red blood cell destruction was a primary effect of being in space, not just caused by fluid shifts. They demonstrated this by directly measuring red blood cell destruction in 14 astronauts during their six-month space missions.

On Earth, our bodies create and destroy 2 million red blood cells every second. The researchers found that astronauts were destroying 54 percent more red blood cells during the six months they were in space, or 3 million every second. These results were the same for both female and male astronauts.

Dr. Trudel's team made this discovery thanks to techniques and methods they developed to accurately measure red blood cell destruction. These methods were then adapted to collect samples aboard the International Space Station. At Dr. Trudel's lab at the University of Ottawa, they were able to precisely measure the tiny amounts of carbon monoxide in the breath samples from astronauts. One molecule of carbon monoxide is produced every time one molecule of heme, the deep-red pigment in red blood cells, is destroyed.

While the team didn't measure red blood cell production directly, they assume the astronauts generated extra red blood cells to compensate for the cells they destroyed. Otherwise, the astronauts would end up with severe anemia, and would have had major health problems in space.

"Thankfully, having fewer red blood cells in space isn't a problem when your body is weightless," said Dr. Trudel. "But when landing on Earth and potentially on other planets or moons, anemia affecting your energy, endurance, and strength can threaten mission objectives. The effects of anemia are only felt once you land, and must deal with gravity again."

In this study, five out of 13 astronauts were clinically anemic when they landed -one of the 14 astronauts did not have blood drawn on landing. The researchers saw that space-related anemia was reversible, with red blood cells levels progressively returning to normal three to four months after returning to Earth.

Interestingly, the team repeated the same measurements one year after astronauts returned to Earth, and found that red blood cell destruction was still 30 percent above preflight levels. These results suggest that structural changes may have happened to the astronaut while they were in space that changed red blood cell control for up to a year after long-duration space missions.

The discovery that space travel increases red blood cell destruction has several implications. First, it supports screening astronauts or space tourists for existing blood or health conditions that are affected by anemia. Second, a recent study by Dr. Trudel's team found that the longer the space mission, the worse the anemia, which could impact long missions to the Moon and Mars. Third, increased red blood cell production will require an adapted diet for astronauts. And finally, it's unclear how long the body can maintain this higher rate of destruction and production of red blood cells.

These findings could also be applied to life on Earth. As a rehabilitation physician, most of Dr. Trudel's patients are anemic after being very ill for a long time with limited mobility, and anemia hinders their ability to exercise and recover. Bedrest has been shown to cause anemia, but how it does this is unknown. Dr. Trudel thinks the mechanism may be like space anemia. His team will investigate this hypothesis during future bedrest studies done on Earth.

"If we can find out exactly what's causing this anemia, then there is a potential to treat it or prevent it, both for astronauts and for patients here on Earth," said Dr. Trudel.

These are the first published results from MARROW, a made-in-Ottawa experiment looking at bone marrow health and blood production in space. The project is funded by the Canadian Space Agency and led by Dr. Trudel.

"This is the best description we have of red blood cell control in space and after return to Earth," said Dr. Trudel. "These findings are spectacular, considering these measurements had never been made before and we had no idea if we were going to find anything. We were surprised and rewarded for our curiosity."

For more information about the MARROW project, see this story about Canadian Space Agency astronaut Dr. David Saint-Jacques' participation in the study, and article in the University of Ottawa's Tabaret.

Research Report: "Hemolysis contributes to anemia during long-duration space flight"


Related Links
The Ottawa Hospital
Space Medicine Technology and Systems


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SPACE MEDICINE
Humble lizards offer surprising approach to engineering artificial lungs
Princeton NJ (SPX) Jan 01, 2022
When it comes to studying lungs, humans take up all the air, but it turns out scientists have a lot to learn from lizards. A new study from Princeton University shows how the brown anole lizard solves one of nature's most complex problems - breathing - with ultimate simplicity. Whereas human lungs develop over months and years into baroque tree-like structures, the anole lung develops in just a few days into crude lobes covered with bulbous protuberances. These gourd-like structures, while f ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
Mapping the photosynthetic properties of the fastest growing alga in the world

Scientists build bioreactors and engineer bacteria to advance biofuel research

Creating sustainable material from waste

Air France-KLM adds biofuel surcharge to plane tickets

SPACE MEDICINE
RACER revs up for checkered flag goal of high-speed, off-road autonomy

Carnegie Mellon-led team to develop robotics to service satellites and build structures

Bone growth inspired "microrobots" that can create their own bone

How robots learn to hike

SPACE MEDICINE
Owl wing design reduces aircraft, wind turbine noise pollution

Earth, wind and reindeer: Lapland herders see red over turbines

Earth, wind and reindeer: Lapland herders see red over turbines

'Ocean battery' targets renewable energy dilemma

SPACE MEDICINE
In Texas, driverless trucks are set to take over roads

'Game changer' e-moped batteries spread from Taiwan across Asia

California warns of possible oversight of Tesla tests

Swiss slam brakes on subsidies for 'con' hybrid cars

SPACE MEDICINE
Form fit: Device wraps around hot surfaces, turns wasted heat to electricity

Serbia backs out of controversial Rio Tinto lithium mine: PM

Encapsulation as a method for preventing degradation in Li-air batteries

Common household cleaner can boost effort to harvest fusion energy on Earth

SPACE MEDICINE
Iran says in talks with Russia to build nuclear power units

Sweden probes drone flights over nuclear plants

Austria gears up to fight EU 'green' nuclear energy plan

France's EDF shares sink as production, price woes mount

SPACE MEDICINE
EU ministers mull climate policy, carbon border tax

EU nations quarrel over whether nuclear, gas are 'green'

World risks more years of high energy prices, emissions: IEA

Idaho researchers unveil enhanced electric power grid test bed

SPACE MEDICINE
Land battle awaits Indigenous communities over Indonesia capital relocation: NGO

Just what is a 'resilient' forest, anyway?

US announces historic $1.1 bn investment for Everglades rehabilitation

Penn State gets grant to teach private forest owners to adapt to climate change









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.