Subscribe free to our newsletters via your
. Solar Energy News .




FLORA AND FAUNA
Biochar quiets microbes, including some plant pathogens
by Staff Writers
Houston TX (SPX) Oct 03, 2013


Rice University graduate student Shelly Hsiao-Ying Cheng shows the tool she created with Rice biochemist Joff Silberg to conduct two experiments in the same dish, one where biochar had a chance to interfere with a microbial conversation and another where it didn't.

In the first study of its kind, Rice University scientists have used synthetic biology to study how a popular soil amendment called "biochar" can interfere with the chemical signals that some microbes use to communicate. The class of compounds studied includes those used by some plant pathogens to coordinate their attacks.

Biochar is charcoal that is produced - typically from waste wood, manure or leaves - for use as a soil additive. Studies have found biochar can improve both the nutrient- and water-holding properties of soil, but its popularity in recent years also owes to its ability to reduce greenhouse gases by storing carbon in soil, in some cases for many centuries.

The new study, published online this month in the journal Environmental Science and Technology, is the first to examine how biochar affects the chemical signaling that's routinely used by soil microorganisms that interact with plants.

"A potted plant may look tranquil, but there are actually a lot of conversations going on in that pot," said study co-author Joff Silberg, associate professor of biochemistry and cell biology and of bioengineering at Rice. "In fact, there are so many different conversations going on in soil that it was impractical for us to determine exactly how biochar was affecting just one of them."

So Silberg and colleagues used the tools of synthetic biology - and a refined experimental setup that Silberg initially drafted with his son's spare Lego bricks - to establish a situation where just one microbial conversation was taking place and where biochar's effects on that conversation could be measured.

The study is the latest from Rice's interdisciplinary Biochar Research Group, which formed in the wake of Hurricane Ike in 2008 when the city of Houston called for ideas about how to get rid of the estimated 5.6 million cubic yards of fallen trees, broken branches and dead greenery left behind by the storm.

The Rice Biochar Group won the $10,000 grand prize in the city's "Recycle Ike" contest and used the money to jump-start a wide-ranging research program that has since received support from the National Science Foundation, the Department of Energy, Rice's Faculty Initiative Fund, Rice's Shell Center for Sustainability and Rice's Institute of Bioscience and Bioengineering.

The cell-signaling study grew out of a previous investigation by one of the group's founding members, Carrie Masiello, associate professor of Earth science. Masiello and another member of the group, Rice biologist Jennifer Rudgers (now at the University of New Mexico), were investigating the combined effects of adding biochar and nutrients to soils.

In all but one case, the biochar and nutrients seemed to enhance one another. In the lone exception, a soil fungus that was typically beneficial to plants began growing so rapidly that it impeded plant growth.

"All of these organisms, to a much greater extent than we probably understand, are talking to each other all the time," Silberg said.

"Microbes talk to microbes. Microbes talk to plants. Plants talk to microbes. And they each make decisions about their behavior based on those conversations. When we started talking about these results, my first thought was, 'You're probably interfering with a conversation.'"

There was no practical way to isolate the conversation that was likely being interfered with in the previous experiment, but Silberg thought of a way to create engineered microbes to test the idea of whether biochar could interfere with such a conversation.

His lab began by working with Matt Bennett, assistant professor of biochemistry and cell biology at Rice, to make use of two tailored forms of E. coli bacteria created by Rice graduate student Chen Ye. One strain "spoke" with a type of chemical communication commonly used by soil microbes, and the other "listened."

Unlike the fungi that use this communication method in soil, the E. coli could be grown in clear agar gels in a petri dish, which meant the researchers could more easily observe them under a microscope. The team next inserted florescence genes into each organism, which caused them to glow different colors - red for speaking and green for listening.

"We needed a way to conduct two experiments in the same dish, one where biochar had a chance to interfere with a conversation and another where it didn't," Silberg said.

Working with his son's Legos, Silberg constructed a pair of rectangular platforms that sat parallel in the dish, about one inch apart. Agar was added to fill all parts of the dish except for the areas blocked by the bricks. Once the agar gel had set, the rectangular platforms were removed to create two empty parallel troughs.

One of these was filled with clear agar, and the other was filled with agar containing biochar. "Speaker" organisms were added to the middle of the dish, and "listeners" were placed on the opposite side of each trough.

Graduate student Shelly Hsiao-Ying Cheng refined Silberg's Lego design and used tools at Rice's Oshman Engineering Design Kitchen to create a set of sturdy platforms for repeated tests. The group then ran dozens of microscopy tests with Dan Wagner, Rice associate professor of biochemistry and cell biology, to see how different formulations and amounts of biochar affected cell signaling.

.


Related Links
Rice University
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLORA AND FAUNA
How plants respond to the changing environment in geological time periods
Beijing, China (SPX) Oct 02, 2013
Understanding the impact of environmental change on plant traits is an important issue in evolutionary biology. As the only direct evidence of past life, fossils provide important information on the interactions between plants and environmental change. After ten years' survey, Professor Zhou Zhekun's group from Kunming Institute of Botany has discovered more than ten well preserved Neogene ... read more


FLORA AND FAUNA
UCLA engineers develop new metabolic pathway to more efficiently convert sugars into biofuels

KAIST announced a novel technology to produce gasoline by a metabolically engineered microorganism

Solving ethanol's corrosion problem may help speed the biofuel to market

First look at complete sorghum genome may usher in new uses for food and fuel

FLORA AND FAUNA
Putting a face on a robot

People prefer different robot faces depending on task assigned

Robots take over

A swarm on every desktop: Robotics experts learn from public

FLORA AND FAUNA
Installation of the first AREVA turbines at Trianel Windpark Borkum and Global Tech 1

Trump's suit to halt wind farm project to be heard in November

Ireland connects first community-owned wind farm to grid

Moventas significantly expands wind footprint

FLORA AND FAUNA
Hong Kong's handcarts keep the city on a roll

US-made electric car tops new registrations in Norway

China, the global auto industry's best hope

Australia researchers unveil 'attention-powered' car

FLORA AND FAUNA
Libya's oil sector faces long-term decline amid anarchy

Slow progress in Israel-Turkey talks threatens gas pipeline plan

US court backs BP in dispute over compensation for oil spill

Russia charges all 30 Greenpeace activists with piracy

FLORA AND FAUNA
Bangladesh breaks ground for first nuclear power plant

Four tonnes of radioactive water spilled in Fukushima

New leak at crippled Fukushima nuclear plant: TEPCO

Radioactivity found in fracking waste water in Pennsylvania

FLORA AND FAUNA
IEA: Southeast Asia's energy demand to increase 80 percent

Nigeria signs $1.3 bn power plant deal with China

Myanmar's energy sector boosted by World Bank investment

ASEAN region has potential for 70 percent green energy

FLORA AND FAUNA
ForWarn follows rapidly changing forest conditions

Indonesia, EU seal pact to stop illegal timber exports

Seeing the forest and the trees

Uphill for the trees of the world




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement