Solar Energy News  
Birds Bats And Insects Hold Secrets For Aerospace Engineers

Flapping flight is inherently unsteady, but that's why it works so well. Birds, bats and insects fly in a messy environment full of gusts traveling at speeds similar to their own. Yet they can react almost instantaneously and adapt with their flexible wings.
by Staff Writers
Ann Arbor MI (SPX) Feb 06, 2008
Natural flyers like birds, bats and insects outperform man-made aircraft in aerobatics and efficiency. University of Michigan engineers are studying these animals as a step toward designing flapping-wing planes with wingspans smaller than a deck of playing cards. A Blackbird jet flying nearly 2,000 miles per hour covers 32 body lengths per second. But a common pigeon flying at 50 miles per hour covers 75.

The roll rate of the aerobatic A-4 Skyhawk plane is about 720 degrees per second. The roll rate of a barn swallow exceeds 5,000 degrees per second.

Select military aircraft can withstand gravitational forces of 8-10 G. Many birds routinely experience positive G-forces greater than 10 G and up to 14 G.

"Natural flyers obviously have some highly varied mechanical properties that we really have not incorporated in engineering," said Wei Shyy, chair of the Aerospace Engineering department and an author of the new book "The Aerodynamics of Low Reynolds Number Flyers."

"They're not only lighter, but also have much more adaptive structures as well as capabilities of integrating aerodynamics with wing and body shapes, which change all the time," Shyy said. "Natural flyers have outstanding capabilities to remain airborne through wind gusts, rain, and snow." Shyy photographs birds to help him understand their aerodynamics.

Pressure generated during flight cause the flapping wings to deform, he explained. In turn, the deformed wing tells the air that the wing shape is different than it appears in still air. If appropriately handled, this phenomenon can delay stall, enhance stability and increase thrust.

Flapping flight is inherently unsteady, but that's why it works so well. Birds, bats and insects fly in a messy environment full of gusts traveling at speeds similar to their own. Yet they can react almost instantaneously and adapt with their flexible wings.

Shyy and his colleagues have several grants from the Air Force totaling more than $1 million a year to research small flapping wing aircraft. Such aircraft would fly slower than their fixed wing counterparts, and more importantly, they would be able to hover and possibly perch in order to monitor the environment or a hostile area.

Shyy's current focus is on the aerodynamics of flexible wings related to micro air vehicles with wingspans between 1 and 3 inches.

"These days, if you want to design a flapping wing vehicle, you could build one with trial and error, but in a controlled environment with no wind gusts," Shyy said. "We are trying to figure out how to design a vehicle that can perform a mission in an uncertain environment. When the wind blows, how do they stay on course?"

A dragonfly, Shyy says, has remarkable resilience to wind, considering how light it is. The professor chalks that up to its wing structure and flight control. But the details are still questions.

"We're really just at the beginning of this," Shyy said.

Shyy is the Clarence L. "Kelly" Johnson Collegiate Professor of Aerospace Engineering. Other authors of the book, "Aerodynamics of Low Reynolds Number Flyers" are: U-M research scientists Yongsheng Lian, Jian Tang and Dragos Viieru, and Hao Liu, professor of Biomechanical Engineering at Chiba University in Japan.

Other collaborators on this research include professors Luis Bernal, Carlos Cesnik and Peretz Friedmann of the University of Michigan; Hao Liu of Chiba University in Japan; Peter Ifju, Rick Lind and Larry Ukeiley of University of Florida, and Sean Humbert of University of Maryland.

Related Links
University of Michigan
Aerospace News at SpaceMart.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Flapping-wing airplanes are envisioned
Ann Arbor, Mich. (UPI) Feb 5, 2008
U.S. scientists are studying birds, bats and insects and their aerobatic efficiencies as a step toward designing flapping-wing airplanes.







  • No major damage to safety at Japan nuclear plant: UN team
  • Lithuania, Poland to sign power deal spurring nuclear plan
  • Russian nuclear chief moved aside for new role: officials
  • Uranium reserves in Mali 'highly encouraging': Australian company

  • Can We Use Science To Solve Global Warming
  • Ancient Climate Secrets Raised From Ocean Depths
  • Microbes As Climate Engineers
  • When Accounting For The Global Nitrogen Budget Do Not Forget Fish

  • Western demand drives Burkina Faso organic goods
  • Dumpling scare exposes Japan's food dependency
  • Chinese dumplings trigger food scare in Japan
  • African Seed Collection First To Arrive In Norway On Route To Arctic Seed Vault

  • Avian Origins: New Analysis Confirms Ancient Beginnings
  • Freshwater Fish Invasions The Result Of Human Activity
  • Markets Of Biodiversity And Equity In Trade An Illusion Or Not
  • Rare dolphin 'beaten to death' in Bangladesh

  • Companies Team Up For Advanced Airbag Landing And Flotation System For Orion Vehicle
  • Russia May Build New Shuttle Spacecraft By 2015
  • SPACEX Conducts First Multi-Engine Firing Of Falcon 9 Rocket
  • Virgin's Branson presents new space ship

  • Nuclear Power In Space - Part 2
  • Outside View: Nuclear future in space
  • Nuclear Power In Space

  • Indonesia To Develop New EO Satellite
  • Russia To Launch Space Project To Monitor The Arctic In 2010
  • New Radar Satellite Technique Sheds Light On Ocean Current Dynamics
  • SPACEHAB Subsidiary Wins NASA Orbiting Carbon Observatory Contract

  • Kiev Radar Row Set To Inflame Tensions Part One
  • BAE To Radar USAF Warning Receivers For C-130J Transports
  • Ukraine to offer Europe former Soviet anti-missile radars
  • Taiwan sees solid gains in flat panel display output

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement