Solar Energy News  
Black Holes That Are Not There

If black holes exist in the universe, the astrophysicists speculate they were formed only at the beginning of time.
by Staff Writers
Cleveland OH (SPX) Jun 20, 2007
"Nothing there," is what Case Western Reserve University physicists concluded about black holes after spending a year working on complex formulas to calculate the formation of new black holes. In nearly 13 printed pages with a host of calculations, the research may solve the information loss paradox that has perplexed physicists for the past 40 years.

Case physicists Tanmay Vachaspati, Dejan Stojkovic and Lawrence Krauss report in the article, "Observation of Incipient Black Holes and the Information Loss Problem," that has been accepted for publication by Physical Review D.

"It's complicated and very complex," noted the researchers, regarding both the general problem and their particular approach to try to solve it.

The question that the physicists set out to solve is: what happens once something collapses into a black hole? If all information about the collapsing matter is lost, it defies the laws of quantum physics. Yet, in current thinking, once the matter goes over the event horizon and forms a black hole, all information about it is lost.

"If you define the black hole as some place where you can lose objects, then there is no such thing because the black hole evaporates before anything is seen to fall in," said Vachaspati.

The masses on the edge of the incipient black hole continue to appear into infinity that they are collapsing but never fall over inside what is known as the event horizon, the region from which there is no return, according to the researchers.

By starting out with something that was nonsingular and then collapsing that matter, they were determined to see if an event horizon formed, signaling the creation of a black hole.

The mass shrinks in size, but it never gets to collapse inside an event horizon due to evidence of pre-Hawking radiation, a non-thermal radiation that allows information of the nature of what is collapsing to be recovered far from the collapsing mass.

"Non-thermal radiation can carry information in it unlike thermal radiation. This means that an outside observer watching some object collapse receives non-thermal radiation back and may be able to reconstruct all the information in the initial object and so the information never gets lost," they said.

According to the researchers, if black holes exist, information formed in the initial state would disappear in the black hole through a burst of thermal radiation that carries no information about the initial state.

Using the functional Schrodinger formalism, the researchers suggest that information about the energy from radiation is long evaporated before an event horizon forms.

"An outside observer will never lose an object down a black hole," said Stojkovic. "If you are sitting outside and throwing something into the black hole, it will never pass over but will stay outside the event horizon even if one considers the effects of quantum mechanics. In fact, since in quantum mechanics the observer plays an important role in measurement, the question of formation of an event horizon is much more subtle to consider."

The physicists are quick to assure astronomers and astrophysicists that what is observed in gravity pulling masses together still holds true, but what is controversial about the new finding is that "from an external viewer's point it takes an infinite amount of time to form an event horizon and that the clock for the objects falling into the black hole appears to slow down to zero," said Krauss, director of Case's Center for Education and Research in Cosmology.

He continued "this is one of the factors that led us to rethink this problem, and we hope our proposal at the very least will stimulate a broader reconsideration of these issues."

If black holes exist in the universe, the astrophysicists speculate they were formed only at the beginning of time.

Related Links
Case Western Reserve University
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


RIT Study Predicts How Fast A Black Hole Can Be Booted From A Galaxy
Rochester, NY (SPX) May 31, 2007
Scientists have discovered for the first time just how fast a supermassive black hole can be thrown from a galaxy when it merges with another black hole. The crucial factor in producing large "kicks" turns out to be the spin that the black holes carry prior to the merger.







  • First Russian Built Nuclear Power Reactor In China Goes Into Operation
  • US Congress Approves Bill On Global Nuclear Fuel Bank
  • Canada Okays Plan For Nuclear Waste Depot
  • Indian Villagers Oppose Uranium Mines

  • Dutch Data Shows China Surpassed The US In 2006 Carbon-Dioxide Emissions
  • Climate Models Consistent With Ocean Warming Observations
  • UN Secretary General Points To Climate Change As Partly Behind Darfur Disaster
  • World Desertification Day Puts Spotlight On Neglected Crisis

  • Down On The Virtual Farm With GrassGro 3
  • Annan Leads Drive To Reverse African Farming Decline
  • University Of Colorado Invention May Allow Thirsty Crops To Signal Farmers
  • Livestock Virtually Fenced In

  • Ancient DNA Traces The Woolly Mammoth Disappearance
  • Book Makes Case For Using Evolution In Everyday Life
  • Study Shows Lizard Moms Dress Their Children For Success
  • CT Scan Reveals Ancient Long-Necked Gliding Reptile

  • Air Force Continues Northrop Grumman Contract For Upper Stage Engine Program
  • World's Largest Vacuum Chamber To Test Orion
  • China To Increase Payload Capacity Of Carrier Rockets
  • SpaceDev, SpaceHab And Constellation Services Sign NASA Space Act Agreements



  • QuikSCAT Marks Eight Years On-Orbit Watching Planet Earth
  • Ukraine To Launch Earth Observation Satellite In 2008
  • NASA Satellites Watch as China Constructs Giant Dam
  • Kalam Calls For Development Of Satellite Systems For Entire Humanity

  • Wind River Carrier-Grade Linux Goes To Space
  • Nanoparticles Unlock The Future Of Superalloy Metals
  • Australia Weighs In To Make The Perfect kilogram
  • German Radar Satellite TerraSAR-X Launched

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement