Solar Energy News  
TECH SPACE
Blasting tiny craters in glass, creating material to miniaturize telecommunication devices
by Staff Writers
Washington DC (SPX) Aug 07, 2018

file illustration only

Modern communication systems often employ optical fibers to carry signals across or between devices. The integrated optics in these devices combine more than one function into a single circuit. However, signal transmission requires long optical fibers, which makes it difficult to miniaturize the device. Instead of long optical fibers, scientists have started testing planar waveguides.

In the Journal of Applied Physics, from AIP Publishing, investigators from the University of Leeds report on a laser-assisted study of a type of glass that shows promise as a material for broadband planar waveguide amplifiers.

This material is made by doping a type of glass made from zinc, sodium and tellurium with the rare earth element erbium. Erbium-doped waveguide amplifiers have garnered attention because electronic transition for erbium occurs at the same wavelength, 1.5 microns, that is a standard in telecommunications technologies.

While a planar waveguide guides light along a single geometric plane, the investigators used a technique known as ultrafast laser plasma doping that utilizes ultrafast lasers to incorporate erbium ions as thin films in a silica substrate. The researchers aimed a high-intensity laser at the surface of the erbium-doped glass, which blasted a tiny crater and produced a thin film from the plume of ejected material.

Their measurements during the film formation process focused on the ablation threshold of the glass. This quantity describes the minimum energy required to separate atoms or molecules by intense laser irradiation. The investigators determined how the ablation threshold in their system was affected by the radius of the laser beam, the number of laser pulses and the concentration of the erbium ion dopant.

They found that the ablation threshold does not depend on the low doping concentration of erbium ions needed to engineer any device. Although this study focused exclusively on erbium ions as the dopant, "This result could be applicable to other dielectric materials processed with ultrafast lasers," said Thomas Mann, an author on the paper.

The investigators also looked at the shape and characteristics of the tiny craters blasted into the glass. Understanding the morphology of craters produced during the fabrication process is important for controlling properties such as the porosity, the surface area, and the ability of the material to scatter or absorb light.

"These properties are important for engineering other dielectric materials for surface area-demanding applications in photocatalysis, sensing, fuel and solar cells, and light extraction in LEDs," Mann said. The next phase in their research will involve more precise engineering of thin films and waveguides for amplifiers, sensors and other devices.

Research Report: "Femtosecond laser ablation properties of Er3+ ion doped zinc-sodium tellurite glass"


Related Links
American Institute of Physics
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Root vegetables to help make new buildings stronger, greener
Washington (UPI) Jul 27, 2018
In effort to make new construction greener and stronger, engineers and material scientists are turning to beets and carrots. Researchers have combined Portland cement with nanoplatelets extracted from root vegetable fibers to produce a stronger, more eco-friendly building material. "The composites are not only superior to current cement products in terms of mechanical and microstructure properties but also use smaller amounts of cement," lead researcher Mohamed Saafi from Lancaster University s ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Soil bugs munch on plastics

Team shatters theoretical limit on bio-hydrogen production

Hydrogen and plastic production offer new catalyst with a dual function

Feeding plants to this algae could fuel your car

TECH SPACE
Research identifies key weakness in modern computer vision systems

Optical fibers that can feel the materials around them

US Army selects Lockheed Martin as integrated systems developer for autonomous convoy program

Cell-sized robots can sense their environment

TECH SPACE
Searching for wind for the future

Clock starts for Germany's next wind farm

ENGIE: Wind energy footprint firmed up in Norway

Batteries make offshore wind energy debut

TECH SPACE
Trump administration seeks rollback of Obama-era fuel efficiency rules

California fights back against EPA proposals on vehicles

Economists say dynamic tolls could ease traffic problems

ULEMCo hydrogen dual-fuel vehicle makes cleaner deliveries for Ocado

TECH SPACE
Looking inside the lithium battery's black box

Chinese-American engineer charged with stealing GE technology

3D printing the next generation of batteries

New class of materials could be used to make batteries that charge faster

TECH SPACE
Extreme makeover: Fukushima nuclear plant tries image overhaul

Framatome becomes main distributor of Chesterton valve packing and seals for the nuclear energy industry

SUSI submarine robot enables successful visual Inspection at Asco Nuclear Power Plant

EDF sees new delay, cost overruns for nuclear reactor

TECH SPACE
Electricity crisis leaves Iraqis gasping for cool air

Energy-intensive Bitcoin transactions pose a growing environmental threat

Germany thwarts China by taking stake in 50Hertz power firm

Global quadrupling of cooling appliances to 14 billion by 2050

TECH SPACE
Animal and fungi diversity boosts forest health

Tropical forests may soon hinder, not help, climate change effort

Fires spark biodiversity criticism of Sweden's forest industry

Behold the Amazonian eco-warrior drag queen









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.