Subscribe free to our newsletters via your
. Solar Energy News .




CHIP TECH
Broadband photodetector for polarized light
by Staff Writers
Houston TX (SPX) Jul 18, 2013


These schematic diagrams depict the fabrication process for p-n junction photodectors using flattened, highly aligned nanotube carpets. Credit: X. He/Rice University.

Using carpets of aligned carbon nanotubes, researchers from Rice University and Sandia National Laboratories have created a solid-state electronic device that is hardwired to detect polarized light across a broad swath of the visible and infrared spectrum.

The research is available online from the American Chemical Society's journal ACS Nano.

"Detecting polarized light is extremely useful," said Rice's Junichiro Kono, professor of electrical and computer engineering and of physics and astronomy. "Many animals and insects can see polarized light and use it for navigation, communication and more. Humans can't see polarized light, so we rely on devices to do that for us."

Most devices can't detect polarized light directly. Instead, engineers place a grate or filter in front of the detector.

"Our photodetector discerns polarized light intrinsically, much like the photoreceptors in the eyes of animals and insects that see polarized light," said Francois Leonard at Sandia National Laboratories, one of the lead researchers on the study.

Polarized light consists of individual electromagnetic waves oscillating parallel to one another. The effect is created when light reflects from a transparent material, which is why polarized sunglasses reduce the glare from water, glass and other surfaces. Astronomers use polarized light in a number of ways, and there are a number of applications for polarimetry in communications and the military.

Rice's new photodetector is the latest development from a collaboration between Rice and Sandia under Sandia's National Institute for Nano Engineering program, which is funded by the Department of Energy. In February, Kono, Leonard and colleagues described a new method for making photodetectors from carpets of carbon nanotubes -- long, narrow tubes of pure carbon that are about as wide as a strand of DNA.

The nanotube carpets used in the photodetectors are grown in the lab of Rice chemist Robert Hauge, who pioneered a process for growing densely packed nanotubes on flat surfaces. Xiaowei He, a graduate student in Kono's group, found a way to use Teflon film to flatten these tightly packed nanotubes so that they are aligned in the same direction. Each carpet contains dozens of varieties of nanotubes, and about two-thirds of the varieties are semiconductors. Because each of the semiconducting varieties interacts with a specific wavelength of light, Kono's team was able to show in its earlier work that the flattened, aligned carpets of nanotubes could serve as broad-spectrum photodetectors.

In the ACS Nano study, lead author He used chemicals called "dopants" to alter the electrical properties of the nanotube carpets. He created two types of carpet, one with positively charged carriers (p-type) and another with negatively charged carriers (n-type). By overlapping sections of these two, He and colleagues created a device called a p-n junction, which is a fundamental building block of microelectronics.

"Our work provides a new path for the realization of polarization-sensitive photodetectors that could be enabled on flexible or nonplanar surfaces," He said.

Study: co-authors include Hauge, Xuan Wang, Kankan Cong and Qijia Jiang, all of Rice; Leonard, Alexander Kane and John Goldsmith, all of Sandia; and Sebastien Nanot, formerly of Rice and now with the Institute of Photonic Sciences in Barcelona, Spain.

.


Related Links
Rice University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
NIST shows how to make a compact frequency comb in minutes
Washington DC (SPX) Jul 15, 2013
Laser frequency combs-high-precision tools for measuring different colors of light in an ever-growing range of applications such as advanced atomic clocks, medical diagnostics and astronomy-are not only getting smaller but also much easier to make. Physicists at the National Institute of Standards and Technology (NIST) can now make the core of a miniature frequency comb in one minute.* Con ... read more


CHIP TECH
Drought response identified in potential biofuel plant

Euro Parliament committee endorses cap on using crops for biofuels

Japan, China and South Korea account for 84 percent of the macroalgae patents

Bacteria from Salar de Uyuni in Bolivia conceal bioplastic

CHIP TECH
Best artificial intelligence programs said only as smart as 4-year-old

Humanoid robot makes appearance

DARPA's ATLAS Robot Unveiled

ReconRobotics touts market position

CHIP TECH
SOWITEC Mexico - strengthening its permitted project pipeline

Sky Harvest To Acquire Vertical Axis Wind Turbine Technology And Manufacturing Facilities

Wind Energy: Components Certification Helps Reduce Costs

Wind power does not strongly affect greater prairie chickens

CHIP TECH
New Model to Improve Vehicle-to-Vehicle Communication for 'Intelligent Transportation'

States back EU-wide sales block in Mercedes aircon row

Auditors attack EU over multi-million subsidy waste

EU bids to fix French-German Daimler auto row

CHIP TECH
Israel's dilemma: Where to sell the east Med gas

Chile reports fracking 'milestone' in gas find

Imaging electron pairing in a simple magnetic superconductor

Japan mulls nationalising unclaimed islands: report

CHIP TECH
S.Africa, EU seal nuclear energy deal

Chernobyl at Sea? Russia Building Floating Nuclear Power Plants

Greenpeace activists held after French nuclear plant break-in

Japan's former premier sues PM Abe

CHIP TECH
Free market is best way to combat climate change

Australia to scrap carbon tax for emissions trading

Australia to ditch pollution levy by 2014

DOE: climate change to affect energy

CHIP TECH
Deforestation spikes in Brazil over last year: group

Changing Atmosphere Affects How Much Water Trees Need

Ivory Coast turns to brute force to save forests

Efficiency in the forest




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement