Solar Energy News  
STELLAR CHEMISTRY
CU Boulder researchers explain mystery of 'banging' galaxy clusters
by Staff Writers
Boulder CO (SPX) Jun 07, 2017


This is an image of a galaxy cluster, which may contain hundreds or thousands of galaxies bound gravitationally.

Two galaxy clusters in the process of merging created a layer of surprisingly hot gas between them that University of Colorado Boulder astronomers believe is from turbulence caused by banging into each other at supersonic speeds.

The two clusters, which are coming together to create the larger galaxy cluster Abell 115, are located some 2.4 billion light years away. The turbulent area of hot gas sandwiched between the two clusters, which CU Boulder Professor Jack Burns likened to a wake behind a motorboat, is about 300 million degrees F. That is roughly three times as hot as the two smaller cluster cores and 10 times hotter than the core of the sun, said Burns, lead study author.

"We did not expect to see such very hot gas between the cluster components," said Burns. "We think the turbulence is like a big spoon stirring up gases, converting the energy of motion from the merging clusters into thermal energy. It is a manifestation of them banging together like two giant pots, something we have not really seen before."

Burns presented the new findings in a press briefing on Tuesday, June 6 at the 230th Meeting of the American Astronomical Society being held in Austin, Texas, June 4-8.

The two merging galaxy clusters individually consist of hundreds of galaxies, each as large or larger than our own Milky Way galaxy, said Burns of CU Boulder's Center for Astrophysics and Space Astronomy. Individual galaxy clusters, which can include thousands of galaxies, are the largest gravitationally bound objects in the universe.

"Energetically speaking, galaxy cluster merging events are the biggest bangs in the universe since the Big Bang," said Burns. "These are massive, very dynamic systems that continue to evolve to this day."

The observations by the CU Boulder team were made using data from NASA's orbiting Chandra X-ray Observatory and the Karl G. Jansky Very Large Array, a radio- astronomy facility near Socorro, New Mexico, operated by the National Radio Astronomy Observatory and funded by the National Science Foundation.

The team's computer simulations show regions of relatively cool gas near the cores of each merging cluster, indicating the two objects have encountered each other before - perhaps circling a few times and stripping gas from one another before merging.

The study co-authors, all from CASA, include Research Associate Eric Hallman, doctoral student Brian Alden, NASA Senior Postdoctoral Fellow David Rapetti and senior collaborator Abhirup Datta. The new study was funded by NASA's Astrophysical Data Analysis Program.

To analyze temperatures within Abell 115 and other similar merging clusters, Burns and his team developed software to produce high-contrast temperature maps of all cluster regions in both the X-ray and radio portions of the electromagnetic spectrum. The new data pipeline uses the NASA Ames Research Center supercomputer to calculate 10,000 to 100,000 spectra in each cluster, said Burns.

The team is continuing to investigate the radio emissions stretching far outside Abell 115 into the intergalactic medium, including their relationship to the hot X-ray gas.

"These radio emissions are caused by electrons in the magnetic field of the galaxy cluster traveling at near the speed of light," said Burns. "Clearly something has energized the electrons, which we think is related to the cluster banging process."

As part of the project, the CU Boulder team is studying a sample of 50 other galaxy clusters for comparison, said Burns.

What's next for Abell 115? "Our computer simulations show these cluster mergers can be really complicated in terms of the accretion process, depending on the state we catch them in," said Burns. "We believe Abell 115 will eventually 'relax' and become centrally condensed, which is relatively boring compared to what we are seeing now."

Galaxy clusters form in what is known as the universe's cosmic web, said Burns. The cosmic web consists of long, narrow filaments of galaxies and intergalactic gas separated by enormous voids. Astronomers believe single cosmic web filaments can stretch for hundreds of millions of light years, an astonishing length considering a single light-year is about 5.9 trillion miles.

STELLAR CHEMISTRY
NRL Astronomers Inspire Youth to Gaze at Stars
Washington DC (SPX) Jun 02, 2017
U.S. Naval Research Laboratory (NRL) astronomers will point their telescopes toward the stars during the annual Astronomy Night on the National Mall (ANOM) June 2. The event will take place from 6 to 11 p.m., north of the Washington Monument, across from the Smithsonian National Museum of African American History and Culture. It is designed to inspire youth to pursue Science, Technology, Engine ... read more

Related Links
University of Colorado at Boulder
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Newly identified gene helps time spring flowering in vital grass crops

Splitting carbon dioxide using low-cost catalyst materials

Cold conversion of food waste into renewable energy and fertilizer

Nagoya University researchers break down plastic waste

STELLAR CHEMISTRY
Muscle grafts could help amputees sense and control artificial limbs

Tactile sensor gives robots new capabilities

Meet the most nimble-fingered robot ever built

Apple 'HomePod' speaker to take on Amazon, Google

STELLAR CHEMISTRY
ADB: Asia-Pacific growth tied to renewables

GE Energy Financial Services Surpasses $15 Billion in Renewable Energy Investments

U.S. states taking up wind energy mantle

Scientists track porpoises to assess impact of offshore wind farms

STELLAR CHEMISTRY
Uber probe of cut-throat workplace triggers firings

Waymo turning tech talent to self-driving trucks

Lyft to bring autonomous rides to Boston with partnership

Daimler, VW eye China's electric car market

STELLAR CHEMISTRY
Electrocatalyst nanostructures key to improved fuel cells, electrolyzers

'Instantly rechargeable' battery could change the future of electric and hybrid automobiles

Printed, flexible and rechargeable battery can power wearable sensors

Nanoalloys 10 times as effective as pure platinum in fuel cells

STELLAR CHEMISTRY
A new twist on the origin of uranium

Nuclear-wary Japan restarts another atomic reactor

Three Mile Island nuclear plant to close in 2019

Why nuclear could become the next 'fossil' fuel

STELLAR CHEMISTRY
India vows to 'go beyond' Paris accord, adding pressure on Trump

US states, cities and firms unite behind Paris accord

US may do less harm outside climate pact than in it: analysts

China further opens energy sector to private investment

STELLAR CHEMISTRY
Decomposing leaves are surprising source of greenhouse gases

Forensic analysis of wood's chemical signatures could curb illegal logging

Canada provides Can$867 mn to beleaguered softwood sector

PNG expedition discovers largest trees at extreme altitudes









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.