Solar Energy News  
SHAKE AND BLOW
Caltech, NASA find web of ruptures in Ridgequest quake
by Staff Writers
Pasadena CA (JPL) Oct 18, 2019

A USGS Earthquake Science Center Mobile Laser Scanning truck scans the surface rupture near the zone of maximum surface displacement of the magnitude 7.1 earthquake that struck the Ridgecrest area. Credit: USGS / Ben Brooks

A new study of Southern California's largest earthquake sequence in two decades provides new evidence that large earthquakes can occur in a more complex fashion than commonly assumed. The analysis by geophysicists from Caltech and NASA's Jet Propulsion Laboratory, both in Pasadena, California, documents a series of ruptures in a web of interconnected faults, with rupturing faults triggering other faults.

The dominoes-like sequence of ruptures also increased strain on a nearby major fault, according to the study, which was published in the journal Science.

The Ridgecrest Earthquake Sequence began with a magnitude 6.4 foreshock on July 4, 2019, followed by a magnitude 7.1 mainshock the next day with more than 100,000 aftershocks. The sequence rattled most of Southern California, but the strongest shaking occurred about 120 miles (190 kilometers) north of Los Angeles near the town of Ridgecrest.

"This ended up being one of the best-documented earthquake sequences in history," said Zachary Ross, assistant professor of geophysics at Caltech and lead author of the Science paper. Ross developed an automated computer analysis of seismometer data that detected the enormous number of aftershocks with highly precise location information, and the JPL team members analyzed data from international radar satellites ALOS-2 (from the Japan Aerospace Exploration Agency, or JAXA) and Sentinel-1A/B (operated by the European Space Agency, or ESA) to map fault ruptures at Earth's surface.

"I was surprised to see how much complexity there was and the number of faults that ruptured," said JPL co-author Eric Fielding.

The satellite and seismometer data together depict an earthquake sequence that is far more complex than those found in the models of many previous large seismic events.

Major earthquakes are commonly thought to be caused by the rupture of a single long fault, such as the more than 800-mile-long (1,300-kilometer-long) San Andreas fault, with the maximum possible magnitude dictated primarily by the length of the fault. After a large 1992 earthquake in Landers, California, ruptured several faults, seismologists began rethinking that model.

The Ridgecrest sequence involved about 20 previously undiscovered, smaller faults crisscrossing in a geometrically complex and geologically young fault zone.

"We actually see that the magnitude 6.4 quake simultaneously broke faults at right angles to each other, which is surprising because standard models of rock friction view this as unlikely," Ross said.

The complexity of the event is only clear because of the multiple types of scientific instruments used to study it. Satellites observed the surface ruptures and associated ground deformation extending out over 60 miles (100 kilometers) in every direction from the rupture, while a dense network of seismometers observed the seismic waves that radiated from the earthquake.

Together, these data allowed scientists to develop a model of how the faults slipped below the surface and the relationship between the major slipping faults and the significant number of small earthquakes occurring before, between and after the two largest shocks.

The Ridgecrest ruptures ended just a few miles shy of the Garlock Fault, a major east-west fault running more than 185 miles (300 kilometers) from the San Andreas Fault to Death Valley.

The fault has been relatively quiet for the past 500 years, but the strain placed on the Garlock Fault by July's earthquake activity triggered it to start slowly moving, a process call fault creep. The fault has slipped 0.8 inches (2 centimeters) at the surface since July, the scientists said.

The event illustrates how little we still understand about earthquakes. "It's going to force people to think hard about how we quantify seismic hazard and whether our approach to defining faults needs to change," Ross said. "We can't just assume that the largest faults dominate the seismic hazard if many smaller faults can link up to create these major quakes."

Research Report: "Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence."


Related Links
Jet Propulsion Laboratory
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SHAKE AND BLOW
'Treasure trove' of quake clues could be unearthed by wavy new technique
London, UK (SPX) Oct 17, 2019
Geologists have improved upon methods to map seabed rocks, helping us better understand underwater earthquakes and the tsunamis they can cause. Their technique combines traditional 'acoustic mapping' with a newer method called 'full waveform inversion'. They found their new method enhanced their view of rocks along a fault line - a break in the Earth's crust - off the east coast of New Zealand's North Island. The researchers hope that their clearer view of the rocks around these fault lines ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SHAKE AND BLOW
Flexible biofuel cell that runs on sweat

Total loses bid for palm oil tax break

Converting CO2 to valuable resources with the help of nanoparticles

Finding microbial pillars of the bioenergy community

SHAKE AND BLOW
Army bio-inspired theoretical research may make robots more effective on the future battlefield

Assembler robots make large structures from little pieces

Facebook researchers use maths for better translations

Controlling robots across oceans and space

SHAKE AND BLOW
Computer models show clear advantages in new types of wind turbines

Model helps choose wind farm locations, predicts output

Norway's Equinor, British SSE chosen for world's biggest offshore wind farm

Sparks fly as Germany's climate plan hits rural landscapes

SHAKE AND BLOW
Urban SUVs driving huge growth in CO2 emissions: IEA

Mitochondria work more like a Tesla car battery than a household Duracell

Uber takes stake in online grocery group Cornershop

Harley-Davidson suspends production of electric motorcycle

SHAKE AND BLOW
Imaging method promises industrial insight into fuel cells

Battery with a twist

Development of highly sensitive diode, converts microwaves to electricity

Machine learning finds new metamaterial designs for energy harvesting

SHAKE AND BLOW
Two in tight race to lead UN nuclear watchdog

Putin says UAE may count on Russia's assistance in development of nuclear power

Framatome installs new instrumentation and control system at Exelon's Calvert Cliffs plant

Framatome brings together nuclear operators of its FROG user group

SHAKE AND BLOW
To save climate, tax carbon at $75 per ton: IMF

How to Harmonise Wildlife and Energy Manufacturing

Canada, if Trudeau wins, to hit net zero emissions by 2050: minister

Sixty-six countries vow carbon neutrality by 2050: UN

SHAKE AND BLOW
Colombia's indigenous on guard against armed groups

Planned roads would be 'dagger in the heart' for Borneo's forests and wildlife

Sharing data for improved forest protection and monitoring

Researchers map the evolutionary history of oaks









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.