Solar Energy News  
STELLAR CHEMISTRY
Can FAST Detect Auroras on Brown Dwarfs
by Staff Writers
Beijing, China (SPX) Jul 12, 2022

stock illustration only

Brown dwarfs are known as "failed stars", owing to the lack of central hydrogen burning. They bridge the gap between planets and stars. Some brown dwarfs are found to maintain kilogauss magnetic fields and produce flaring radio emissions, similar to aurora on magnetized planets in solar system, arousing astronomers' curiosities about their field properties and dynamos.

Radio emissions from brown dwarfs reflect their magnetic activities. For solar-type stars, radio, optical and X-ray emissions are all used as magnetic indicators, while for brown dwarfs, optical and X-ray decrease dramatically, and radio becomes the most efficient probe.

Dr. TANG Jing and her colleagues from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC) carried out a statistical analysis of radio-flaring brown dwarf population, which helped quantify the potential of finding such objects in FAST surveys.

This study was published in Research in Astronomy and Astrophysics, a peer-reviewed international journal in astronomy and astrophysics supported by NAOC and the Chinese Astronomical Society.

The traditional way is to select a number of brown dwarfs and track them for several hours to catch the possible flares, which is very expensive. Till now, the detected flaring brown dwarfs are less than 20. The so-called Commensal Radio Astronomy FAST Survey (CRAFTS) promises to increase the number by almost one order of magnitude, according to the study.

Led by Dr. LI Di, chief scientist of FAST, CRAFTS utilizes a novel and unprecedented mode to realize simultaneous data taking for pulsar and FRB search, Galactic HI mapping, and HI galaxy study. It is designed to cover 60% of the sky in drift-scan mode.

For FAST, the most significant problem for a point source is the severe confusion due to the large beam size. However, the flaring radio emission is highly circularly polarized, suffering little confusion. Circular polarization can be calculated from the orthogonally polarized outputs, independent of system fluctuation, and is a good method to search for flares.

If we find some highly circularly polarized signal in the survey, we can cross match the archival optical/infrared counterpart for identification. FAST is expected to detect flaring brown dwarfs as far as 180 pc.

Most flaring brown dwarfs are detected at high frequencies. Though some efforts have been made on low frequencies, the flaring emission at L band has not been detected yet. FAST may fill in this gap. If successful, it also bodes well for FAST's potential to discovery exoplanets with strong magnetic fields.

Research Report:The Potential of Detecting Radio-flaring Ultracool Dwarfs at L band in the FAST Drift-scan Survey


Related Links
National Astronomical Observatories
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Chinese, Australian astronomers detect key process of binary evolution
Beijing (XNA) Jul 10, 2022
A joint research team of Chinese and Australian astronomers has detected a binary star system ejecting a common envelope, a key process of the binary star evolution, which could be of great importance to studies of the expansion of the universe and dark energy. This is the first time that scientists have observed direct evidence of the key process of the evolution of the common envelope of binary stars. The study was published online in the Monthly Notices of the Royal Astronomical Society Thursda ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
MSU researchers create method for breaking down plant materials for earth-friendly energy

Solar-powered chemistry uses CO2 and H2O to make feedstock for fuels, chemicals

Technologies boost potential for carbon dioxide conversion to useful products

Study points to Armenian origins of ancient crop with aviation biofuel potential

STELLAR CHEMISTRY
Bees' 'waggle dance' may revolutionize how robots talk to each other in disaster zones

Shapeshifting microrobots can brush and floss teeth

Rover plus astronaut complete Mount Etna challenge

Building explainability into the components of machine-learning models

STELLAR CHEMISTRY
Modern wind turbines can more than compensate for decline in global wind resource

End-of-life plan needed for tens of thousands of wind turbine blades

Engineers develop cybersecurity tools to protect solar, wind power on the grid

1500 sensors for the rotor blades of the future

STELLAR CHEMISTRY
Electric vehicles pass the remote road test

EU court rules Volkswagen emissions software illegal

New traffic device leaves Hong Kong pedestrians red in the face

Smart cars are on the radar: Automatic object recognition and tracking using lidar

STELLAR CHEMISTRY
PPPL scientists propose solution to a long-puzzling fusion problem

New iron catalyst could finally make hydrogen fuel cells affordable

Longer lasting sodium-ion batteries on the horizon

Volkswagen takes on US, China rivals with battery factory

STELLAR CHEMISTRY
Better estimating the risk of coastal flooding for nuclear power plants

EU Parliament backs green label for gas, nuclear

Framatome selected to provide full system decontamination at Bruce Power Units 3 and 4

Sweden's Vattenfall eyes small nuclear reactors

STELLAR CHEMISTRY
Tory candidates must keep net zero pledge: business

Smart thermostats inadvertently strain electric power grids

ECB urges banks to 'step up' climate risk management

Global effort to police 'greenwashing' begins to take shape

STELLAR CHEMISTRY
Race to find Brazil Amazon species before they disappear

The risky business of Amazonian tree climbers

California wildfire threat to Yosemite giant sequoias 'almost gone'

Fourth arrest in Amazon murders of journalist, guide: police









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.