Solar Energy News  
TECH SPACE
'Candy cane' polymer weave could power functional fabrics and devices
by Staff Writers
New Orleans LA (SPX) Apr 17, 2018

Supercapacitors woven like the red and white of a candy cane could have increased charge storage capacity compared to current technology.

If scientists are ever going to deliver on the promise of implantable artificial organs or clothing that dries itself, they'll first need to solve the problem of inflexible batteries that run out of juice too quickly. They're getting closer, and today researchers report that they've developed a new material by weaving two polymers together in a way that vastly increases charge storage capacity.

The researchers will present their work at the 255th National Meeting and Exposition of the American Chemical Society (ACS). ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features more than 13,000 presentations on a wide range of science topics.

"We had been developing polymer networks for a different application involving actuation and tactile sensing," Tiesheng Wang says. "After the project, we realized that the stretchable, bendable material we'd made could potentially be used for energy storage."

Batteries, specifically lithium-ion batteries, dominate the energy storage landscape. However, the chemical reactions underlying the charging and discharging process in batteries are slow, limiting how much power they can deliver.

Plus, batteries tend to degrade over time, requiring replacement. An alternate energy storage device, the supercapacitor, charges rapidly and generates serious power, which could potentially allow electric cars to accelerate more quickly, among other applications.

Plus, supercapacitors store energy electrostatically, not chemically, which makes them more stable and long-lasting than many batteries. But today's commercially available supercapacitors require binders and have low energy density, limiting their application in emerging go-anywhere electronics.

Wang, a graduate student in the lab of Stoyan Smoukov, Ph.D., at the University of Cambridge (U.K.) suspected that a flexible conducting polymer-based material from another project they were working on could be a better alternative.

Conducting polymers, such as poly(3,4-ethylenedioxythiophene) (PEDOT), are candidate supercapacitors that have advantages over traditional carbon-based supercapacitors as charge storage materials. They are pseudocapacitive, meaning they allow reversible electrochemical reactions, and they also are chemically stable and inexpensive. However, ions can only penetrate the polymers a couple of nanometers deep, leaving much of the material as dead weight.

Scientists working to improve ion mobility had previously developed nanostructures that deposit thin layers of conducting polymers on top of support materials, which improves supercapacitor performance by making more of the polymer accessible to the ions. The drawback, according to Wang, is that these nanostructures can be fragile, difficult to make reproducibly when scaled-up and poor in electrochemical stability, limiting their applicability.

So, Smoukov and Wang developed a more robust material by weaving together a conducting polymer with an ion-storage polymer. The two polymers were stitched together to form a candy cane-like geometry, with one polymer playing the role of the white stripe and the other, red. While PEDOT conducts electricity, the other polymer, poly(ethylene oxide) (PEO), can store ions.

The interwoven geometry is instrumental to the energy storage benefits, Wang says, because it allows the ions to access more of the material overall, approaching the "theoretical limit."

When tested, the candy cane supercapacitor demonstrated improvements over PEDOT alone with regard to flexibility and cycling stability. It also had nearly double the specific capacitance compared to conventional PEDOT-based supercapacitors.

Still, there's room for improvement, Smoukov says. "In future experiments, we will be substituting polyaniline for PEDOT to increase the capacitance," he says.

"Polyaniline, because it can store more charge per unit of mass, could potentially store three times as much electricity as PEDOT for a given weight."

That means lighter batteries with the same energy storage can be charged faster, which is an important consideration in the development of novel wearables, robots and other devices.

"Candy cane-like semi-interpenetrating polymer networks for enhanced fast-charging power source of electronics"


Related Links
American Chemical Society
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Large single-crystal graphene could advance scalable 2-D materials
Oak Ridge TN (SPX) Apr 13, 2018
A new method to produce large, monolayer single-crystal-like graphene films more than a foot long relies on harnessing a "survival of the fittest" competition among crystals. The novel technique, developed by a team led by the Department of Energy's Oak Ridge National Laboratory, may open new opportunities for growing the high-quality two-dimensional materials necessary for long-awaited practical applications. Making thin layers of graphene and other 2D materials on a scale required for research p ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Research shows how genetics can contribute for advances in 2G ethanol production

Algae-forestry, bioenergy mix could help make CO2 vanish from thin air

Removing the brakes on plant oil production

NUS engineers pioneer greener and cheaper technique for biofuel production

TECH SPACE
Want computers to see better in the real world? Train them in a virtual reality

Visual recognition: Seeing the world through the eyes of rodents

Russia's Robot FEDOR to Be the First to Fly to Space on Board New Spacecraft

How accurate is your AI

TECH SPACE
Alberta proposes more renewable energy incentives

Transformer station for giant German wind farm positioned

Scotland's largest offshore wind farm close to operational

Construction complete ahead of schedule at Sommette wind farm, France

TECH SPACE
With bikes, transit, Uber unveils urban transport vision

EU unveils new consumer protections after 'dieselgate' scandal

US investigating fatal Tesla crash in California

Tesla says 'Autopilot' was engaged during fatal crash

TECH SPACE
New technology could wean the battery world off cobalt

The raw power of human motion

Filling lithium-ion cells faster

Tungsten 'too brittle' for nuclear fusion reactors

TECH SPACE
Namibia president denies graft in nuclear deal

NRC approval brings Framatome's fuel technology closer to market

Framatome displays year of powerful performance, supports 44 nuclear power outages in 2017

Nuclear safety: AREVA develops an innovative technology for reactor inspection

TECH SPACE
Carbon taxes can be both fair and effective, study shows

Trump rolls back Obama-era fuel efficiency rules

Lights out for world landmarks in nod to nature

Puerto Rico power grid snaps, nearly 1 million in the dark

TECH SPACE
Palm trees are spreading northward - how far will they go?

Soil fungi may help determine the resilience of forests to environmental change

Drought-induced changes in forest composition amplify effects of climate change

Amazon deforestation is close to tipping point









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.