Solar Energy News  
NANO TECH
Carbon nanotubes self-assemble into tiny transistors
by Staff Writers
Groningen, Netherlands (SPX) Apr 06, 2017


This is an artist's impression of carbon nanotubes wrapped in polymers with thiol side chains (yellow spheres) and assembled on gold electrodes. Image courtesy Arjen Kamp.

Carbon nanotubes can be used to make very small electronic devices, but they are difficult to handle. University of Groningen scientists, together with colleagues from the University of Wuppertal and IBM Zurich, have developed a method to select semiconducting nanotubes from a solution and make them self-assemble on a circuit of gold electrodes. The results were published in the journal Advanced Materials on 5 April.

The results look deceptively simple: a self-assembled transistor with nearly 100 percent purity and very high electron mobility. But it took ten years to get there. University of Groningen Professor of Photophysics and Optoelectronics Maria Antonietta Loi designed polymers which wrap themselves around specific carbon nanotubes in a solution of mixed tubes. Thiol side chains on the polymer bind the tubes to the gold electrodes, creating the resultant transistor.

Patent
'In our previous work, we learned a lot about how polymers attach to specific carbon nanotubes', Loi explains. These nanotubes can be depicted as a rolled sheet of graphene, the two-dimensional form of carbon. 'Depending on the way the sheets are rolled up, they have properties ranging from semiconductor to semi-metallic to metallic.' Only the semiconductor tubes can be used to fabricate transistors, but the production process always results in a mixture.

'We had the idea of using polymers with thiol side chains some time ago', says Loi. The idea was that as sulphur binds to metals, it will direct polymer-wrapped nanotubes towards gold electrodes. While Loi was working on the problem, IBM even patented the concept. 'But there was a big problem in the IBM work: the polymers with thiols also attached to metallic nanotubes and included them in the transistors, which ruined them.'

Solution
Loi's solution was to reduce the thiol content of the polymers, with the assistance of polymer chemists from the University of Wuppertal. 'What we have now shown is that this concept of bottom-up assembly works: by using polymers with a low concentration of thiols, we can selectively bring semiconducting nanotubes from a solution onto a circuit.' The sulphur-gold bond is strong, so the nanotubes are firmly fixed: enough even to stay there after sonication of the transistor in organic solvents.

The production process is simple: metallic patterns are deposited on a carrier , which is then dipped into a solution of carbon nanotubes. The electrodes are spaced to achieve proper alignment: 'The tubes are some 500 nanometres long, and we placed the electrodes for the transistors at intervals of 300 nanometres. The next transistor is over 500 nanometres away.' The spacing limits the density of the transistors, but Loi is confident that this could be increased with clever engineering.

'Over the last years, we have created a library of polymers that select semiconducting nanotubes and developed a better understanding of how the structure and composition of the polymers influences which carbon nanotubes they select', says Loi. The result is a cheap and scalable production method for nanotube electronics. So what is the future for this technology? Loi: 'It is difficult to predict whether the industry will develop this idea, but we are working on improvements, and this will eventually bring the idea closer to the market.'

Vladimir Derenskyi, Widianta Gomulya, Wytse Talsma, Jorge Mario Salazar-Rios, Martin Fritsch, Peter Nirmalraj, Heike Riel, Sybille Allard, Ulrich Scherf, Maria A. Loi: On-chip chemical self-assembly of semiconducting Single-Walled Carbon Nanotubes (SWNTs): towards robust and scale invariant SWNTs transistors Advanced Materials, online 5 april 2017

NANO TECH
Photonic crystal and nanowire combo advances 'photonic integration'
Washington DC (SPX) Apr 04, 2017
Contrary to the tremendous success story of electronic integration, photonic integration is still in its infancy. One the most serious obstacles it faces is the need to use a variety of materials to achieve different functions - unlike electronic integration. To complicate matters further, many of the materials required for photonic integration aren't compatible with silicon integration technolo ... read more

Related Links
University of Groningen
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Ridding the oceans of plastics by turning the waste into valuable fuel

Scientists engineer sugarcane to produce biodiesel, more sugar for ethanol

Gripen fighter completes test flights using 100 percent biofuel

Shell unveils giant new high-tech research lab in India

NANO TECH
Robot epigenetics: Adding complexity to embodied robot evolution

Facebook launches digital assistant 'M' in US

NASA Tests Robotic Ice Tools for Use on Ocean Worlds

NASA Robotic Refueling Mission Departs Station

NANO TECH
U.N. says low-carbon economy not a "pipe dream"

Canada sees emerging role for wind energy

Mega-wind farm offshore Denmark clears hurdle

Japan scientist eyes energy burst from 'typhoon turbine'

NANO TECH
Renewable energy needed to drive uptake of electric vehicles

Ford boosts research in Canada for connected cars

Tesla tops quarterly sales forecast

NASA Kennedy Partners to Help Develop Self-driving Cars

NANO TECH
How does oxygen get into a fuel cell

Clarifying how lithium ions ferry around in rechargeable batteries

Building a market for renewable thermal technologies

New gel-like coating beefs up the performance of lithium-sulfur batteries

NANO TECH
Toshiba to buy Engie's stake in NuGen for $139 mn

Toshiba execs under fire as loss forecast balloons

Westinghouse's woes spotlight US nuclear sector's decline

Toshiba's US nuclear unit files for bankruptcy protection

NANO TECH
World Bank urges more investment for developing global electricity

US states begin legal action on Trump energy delay

Program to be axed saves energy in LA buildings

Energy demand metrics indicate strong U.S. economy

NANO TECH
Stanford study explores risk of deforestation as agriculture expands in Africa

First world survey finds 9,600 tree species risk extinction

Emissions from the edge of the forest

Methane emissions from trees









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.