Subscribe free to our newsletters via your
. Solar Energy News .




INTERN DAILY
Cartilage made easy with novel hybrid printer
by Staff Writers
London, UK (SPX) Nov 22, 2012


Electrospinning allows the composition of polymers to be easily controlled and therefore produces porous structures that encourage cells to integrate into surrounding tissue.

The printing of three-dimensional tissue has taken a major step forward with the creation of a novel hybrid printer that simplifies the process of creating implantable cartilage. The printer has been presented in IOP Publishing's journal Biofabrication, and was used to create cartilage constructs that could eventually be implanted into injured patients to help re-grow cartilage in specific areas, such as the joints.

The printer is a combination of two low-cost fabrication techniques: a traditional ink jet printer and an electrospinning machine.

Combining these systems allowed the scientists to build a structure made from natural and synthetic materials. Synthetic materials ensure the strength of the construct and natural gel materials provide an environment that promotes cell growth.

In this study, the hybrid system produced cartilage constructs with increased mechanical stability compared to those created by an ink jet printer using gel material alone. The constructs were also shown to maintain their functional characteristics in the laboratory and a real-life system.

The key to this was the use of the electrospinning machine, which uses an electrical current to generate very fine fibres from a polymer solution.

Electrospinning allows the composition of polymers to be easily controlled and therefore produces porous structures that encourage cells to integrate into surrounding tissue.

"This is a proof of concept study and illustrates that a combination of materials and fabrication methods generates durable implantable constructs," said James Yoo, M.D., Ph.D., Professor at the Wake Forest Institute for Regenerative Medicine, and an author on the study.

"Other methods of fabrication, such as robotic systems, are currently being developed to further improve the production of implantable tissue constructs."

In this study, flexible mats of electrospun synthetic polymer were combined, layer-by-layer, with a solution of cartilage cells from a rabbit ear that were deposited using the traditional ink jet printer. The constructs were square with a 10cm diagonal and a 0.4mm thickness.

The researchers tested their strength by loading them with variable weights and, after one week, tested to see if the cartilage cells were still alive.

The constructs were also inserted into mice for two, four and eight weeks to see how they performed in a real life system. After eight weeks of implantation, the constructs appeared to have developed the structures and properties that are typical of elastic cartilage, demonstrating their potential for insertion into a patient.

The researchers state that in a future scenario, cartilage constructs could be clinically applied by using an MRI scan of a body part, such as the knee, as a blueprint for creating a matching construct.

A careful selection of scaffold material for each patient's construct would allow the implant to withstand mechanical forces while encouraging new cartilage to organise and fill the defect.

.


Related Links
Institute of Physics
Hospital and Medical News at InternDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








INTERN DAILY
Discovery could hold the key to super-sensory hear
Lincoln UK (SPX) Nov 22, 2012
The discovery of a previously unidentified hearing organ in the South American bush crickets' ear could pave the way for technological advancements in bio-inspired acoustic sensors research, including medical imaging and hearing aid development. Researchers from the University of Bristol and University of Lincoln discovered the missing piece of the jigsaw in the understanding of the process of e ... read more


INTERN DAILY
Mixing processes could increase the impact of biofuel spills on aquatic environments

White rot fungus boosts ethanol production from corn stalks, cobs and leaves

14,000 Jobs Possible from Military Biofuels Initiative

Airbus, EADS and ENN make a push for new generation aviation fuels

INTERN DAILY
Toshiba unveils dog-like robot for Fukushima plant

Ban 'killer robots,' rights group urges

Britain says no calculators for math tests

Off to the Future with a new Soccer Robot

INTERN DAILY
Areva commits to Scotland turbine plant

AREVA deploys its industrial plan to produce a 100 percent French wind power technology

Gannets could be affected by offshore energy developments

Scotland approves 85MW Highlands wind farm

INTERN DAILY
Chinese-Israeli car's debut planned for March

Fiat touts Italian style in China car challenge

China car market to grow 8% annually: McKinsey

Jaguar Land Rover, Chery lay foundation for China plant

INTERN DAILY
Turks hike energy stake in Iraqi Kurdistan

New energy technologies promise brighter future

Oil prices ease amid Gaza truce, China data

Boston said riddled with natural gas leaks

INTERN DAILY
Swiss nuclear reactor shuts down due to defect

Nano insights could lead to improved nuclear reactors

Coalition Reaffirm Commitments To Advance SMR Technology

Swiss nuclear reactor back up after closure over defect

INTERN DAILY
Official "Green Tuesday" Launch November 27, 2012

Poland to invest 24 billion euros in energy by 2020

Analyzing the cost of federal and other renewable energy subsidies in Texas

High Risk Investing - The New Trend in Energy

INTERN DAILY
Preserve the services of mangroves - Earth's invaluable coastal forests

Massive deforestation risks turning Somalia into desert

Myanmar's forests at risk

Inspiration from Mother Nature leads to improved wood




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement