Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
Catching and releasing tiny molecules
by Staff Writers
Boston MA (SPX) Apr 01, 2015


Capture and release of specific target biomolecules from an ingoing solution mixture in a microfluidic system occurs by the concerted, dynamic and reversible action of hydrogel volume change and aptamer bind-and-release through changes in solution pH. Image courtesy of Ankita Shastri and Ximin He. For a larger version of this image please go here.

Employing an ingenious microfluidic design that combines chemical and mechanical properties, a team of Harvard scientists has demonstrated a new way of detecting and extracting biomolecules from fluid mixtures. The approach requires fewer steps, uses less energy, and achieves better performance than several techniques currently in use and could lead to better technologies for medical diagnostics and chemical purification.

The biomolecule sorting technique was developed in the laboratory of Joanna Aizenberg, Amy Smith Berylson Professor of Materials Science at Harvard School of Engineering and Applied Sciences (SEAS) and Professor in the Department of Chemistry and Chemical Biology.

Aizenberg is also co-director of the Kavli Institute for Bionano Science and Technology and a core faculty member at Harvard's Wyss Institute for Biologically Inspired Engineering, leading the Adaptive Materials Technologies platform there.

The new microfluidic device, described in a paper appearing in the journal Nature Chemistry, is composed of microscopic "fins" embedded in a hydrogel that is able to respond to different stimuli, such as temperature, pH, and light.

Special DNA strands called aptamers, that under the right conditions bind to a specific target molecule, are attached to the fins, which move the cargo between two chemically distinct environments. Modulating the pH levels of the solutions in those environments triggers the aptamers to "catch" or "release" the target biomolecule.

After using computer simulations to test their novel approach, in collaboration with Prof. Anna C. Balazs from the University of Pittsburgh, Aizenberg's team conducted proof-of-concept experiments in which they successfully separated thrombin, an enzyme in blood plasma that causes the clotting of blood, from several mixtures of proteins.

Their research suggests that the technique could be applicable to other biomolecules, or used to determine chemical purity and other characteristics in inorganic and synthetic chemistry.

"Our adaptive hybrid sorting system presents an efficient chemo-mechanical transductor, capable of highly selective separation of a target species from a complex mixture--all without destructive chemical modifications and high-energy inputs," Aizenberg said.

"This new approach holds promise for the next-generation, energy-efficient separation and purification technologies and medical diagnostics."

The system is dynamic; its integrated components are highly tunable. For example, the chemistry of the hydrogel can be modified to respond to changes in temperature, light, electric and magnetic fields, and ionic concentration. Aptamers, meanwhile, can target a range of proteins and molecules in response to variations in pH levels, temperature, and salt.

"The system allows repeated processing of a single input solution, which enables multiple recycling and a high rate of capture of the target molecules," said lead author Ximin He, Assistant Professor of Materials Science and Engineering at Arizona State University and formerly a postdoctoral research fellow in Aizenberg's group at Harvard.

Conventional biomolecule sorting systems rely on external electric fields, infrared radiation, and magnetic fields, and often require chemical modifications of the biomolecules of interest. That means setups can be used only once or require a series of sequential steps.

In contrast, said Ankita Shastri, a graduate student in Chemistry and Chemical Biology at Harvard and a member of Aizenberg's group, the new catch-transport-and-release system "is more efficient--requiring minimal steps and less energy, and effective--achieving recovery of almost all of the target biomolecule through its continuous reusability."

The authors say that the system could provide a means of removing contaminants from water--and even be tailored to enable energy-efficient desalination of seawater. It could also be used to capture valuable minerals from fluid mixtures.

Other contributors to the work include Lynn M. McGregor and Yolanda Vasquez from Harvard University; Ya Liu, Amitabh Bhattacharya, Yongting Ma, and Olga Kuksenok from the University of Pittsburgh; Valerie Harris, Hanqing Nan, and Maritza Mujica from Arizona State University; and Michael Aizenberg from the Wyss Institute.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Harvard University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Rare-earth innovation to improve nylon manufacturing
Ames IA (SPX) Apr 01, 2015
The Critical Materials Institute, a U.S. Department of Energy Innovation Hub led by the Ames Laboratory, has created a new chemical process that makes use of the widely available rare-earth metal cerium to improve the manufacture of nylon. The process uses a cerium-based material made into nanometer-sized particles with a palladium catalyst to produce cyclohexanone, a key ingredient in the ... read more


TECH SPACE
Researchers use wastewater to grow algae for biofuels

Do biofuel policies seek to cut emissions by cutting food

Algae from clogged waterways could serve as biofuels and fertilizer

New yeast strain to enhance biofuel and biochemical production

TECH SPACE
Researchers build brain-machine interface to control prosthetic hand

Artificial hand able to respond sensitively using smart metal wires

Tiny bio-robot is a germ suited-up with graphene quantum dots

Snake robots learn to turn by following the lead of real sidewinders

TECH SPACE
Cornell deploys dual ZephIR lidars for more accurate turbulence study

U.S. to fund bigger wind turbine blades

Gamesa and AREVA create the joint-venture Adwen

Time ripe for Atlantic wind, advocates say

TECH SPACE
Nissan pledges self-driving cars in Japan in 2016

Toyota to build new plants in China, Mexico: media

Tesla reports 'record' quarter for auto sales

Driverless Cars Poised To Transform Automotive Industry

TECH SPACE
Squeeze to remove heat with elastocaloric materials

New technology converts packing peanuts to battery components

Superconductivity breakthroughs

You can't play checkers with charge ordering

TECH SPACE
Bulgaria drops $4bn Westinghouse nuclear deal

Atomic Experts to Visit Fukushima in April to Check Contaminated Water

Japan's NRA confirms fault line under nuclear reactor on west coast active

Jordan, Russia ink deal on nuclear reactor plant

TECH SPACE
Latin America divided between oil and green energy

Residential research poor foundation for sustainable development

New Zealand breaks renewable energy record

Energy company Eneco is heating homes with computer servers

TECH SPACE
Western forests decimated by pine beetles not more likely to burn

Forests for water in eastern Amazonia

Study: Only two intact forests left on Earth

Amazon's carbon uptake declines as trees die faster




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.