Solar Energy News  
PHYSICS NEWS
Chance Microlensing Events Probe Galaxy Cores
by Staff Writers
London, UK (SPX) Jul 06, 2016


Scientists are particularly interested in seeing what happens to the gas as it approaches the black hole. But studying such small objects at such large distances is tricky, as they simply look like points of light in even the best telescopes. Observations with spectroscopy (where light from an object is dispersed into its component colors) show that fast moving clouds of emitting material surround the disc but the true size of the disc and exact location of the clouds are very difficult to pin down.

Some galaxies pump out vast amounts of energy from a very small volume of space, typically not much bigger than our own solar system. The cores of these galaxies, so called active galactic nuclei or AGNs, are often hundreds of millions or even billions of light-years away, so are difficult to study in any detail.

Natural gravitational 'microlenses' can provide a way to probe these objects, and now a team of astronomers have seen hints of the extreme AGN brightness changes that hint at their presence. Leading the microlensing work, PhD student Alastair Bruce of the University of Edinburgh presents their work Friday, 1 July at the National Astronomy Meeting in Nottingham.

The energy output of an AGN is often equivalent to that of a whole galaxy of stars. This is an output so intense that most astronomers believe only gas falling in towards a supermassive black hole - an object with many millions of times the mass of the Sun - can generate it. As the gas spirals towards the black hole it speeds up and forms a disc, which heats up and releases energy before the gas meets its demise.

Scientists are particularly interested in seeing what happens to the gas as it approaches the black hole. But studying such small objects at such large distances is tricky, as they simply look like points of light in even the best telescopes. Observations with spectroscopy (where light from an object is dispersed into its component colors) show that fast moving clouds of emitting material surround the disc but the true size of the disc and exact location of the clouds are very difficult to pin down.

Bruce will describe how astronomers can make use of cosmic coincidences, and benefit from a phenomenon described by Einstein's general theory of relativity more than a century ago. In his seminal theory, Einstein described how light travels in curved paths under the influence of a gravitational field. So massive objects like black holes, but also planets and stars, can act to bend light from a more distant object, effectively becoming a lens.

This means that if a planet or star in an intervening galaxy passes directly between the Earth and a more distant AGN, over a few years or so they act as a lens, focusing and intensifying the signal coming from near the black hole. This type of lensing, due to a single star, is termed microlensing. As the lensing object travels across the AGN, emitting regions are amplified to an extent that depends on their size, providing astronomers with valuable clues.

Bruce and his team believe they have already seen evidence for two microlensing events associated with AGN. These are well described by a simple model, displaying a single peak and a tenfold increase in brightness over several years. Microlensing in AGNs has been seen before, but only where the presence of the galaxy was already known. Now Bruce and his team are seeing the extreme changes in brightness that signifies the discovery of both previously unknown microlenses and AGNs.

Bruce says: "Every so often, nature lends astronomers a helping hand and we see a very rare event. It's remarkable that an unpredictable alignment of objects billions of light-years away could help us probe the surroundings of black holes. In theory, microlensing could even let us see detail in accretion discs and the clouds in their vicinity. We really need to take advantage of these opportunities whenever they arise."

There are expected to be fewer than 100 active AGN microlensing events on the sky at any one time, but only some will be at or near their peak brightness. The big hope for the future is the Large Synoptic Survey Telescope (LSST), a project the UK recently joined. From 2019 on, it will survey half the sky every few days, so has the potential to watch the characteristic changes in the appearance of the AGNs as the lensing events take place.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Royal Astronomical Society
The Physics of Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
PHYSICS NEWS
Gravitational Waves Spotted Again
San Diego CA (SPX) Jun 19, 2016
On 26 December 2015, scientists from the LIGO and Virgo collaborations received an unexpected Christmas gift when the Advanced LIGO detectors recorded a new gravitational wave signal, three months after the first detection. And once again, the signal - a tiny distortion of spacetime - came from the final spinning 'dance' of two black holes on the point of merging, a phenomenon known as coalescen ... read more


PHYSICS NEWS
From climate killer to fuels and polymers

Study shows trees with altered lignin are better for biofuels

Solar exposure energizes muddy microbes

Chemists find new way to recycle plastic waste into fuel

PHYSICS NEWS
China's Midea moves step closer to acquiring German robotics firm Kuka

Scientists unveil light-powered molecular motors

Google buys French startup that helps machines see

Chinese firm Midea gets over 50% of Germany's Kuka

PHYSICS NEWS
More wind power added to French grid

How China can ramp up wind power

Scotland investing more in offshore wind

Gamesa, Siemens join forces to create global wind power leader

PHYSICS NEWS
German parliament to investigate government's role in 'Dieselgate' scandal

Tesla fatal crash is setback to autonomous cars

Volkswagen out to fix big diesels in emissions scandal

VW still long way from drawing line under engine-rigging scandal

PHYSICS NEWS
3-D paper-based microbial fuel cell operating under continuous flow condition

Bangladesh coal plant threatens World Heritage mangrove: petition

Building a better battery

Activists denounce murder of Philippine anti-coal campaigner

PHYSICS NEWS
Reactor fuels Russia bid for post-Fukushima atomic lead

Germany may wait 100 years for nuclear waste storage site

Russian floating nuclear power station undergoes mooring tests

Russia's REMIX Innovative Nuclear Fuel Enters First Field Trials

PHYSICS NEWS
Sweden's 100 percent carbon-free emissions challenge

Norway MPs vote to go carbon neutral by 2030

Algorithm could help detect and reduce power grid faults

It pays to increase energy consumption

PHYSICS NEWS
Watching a forest breathe

Understanding forest fire history can help keep forests healthy

NASA Maps California Drought Effects on Sierra Trees

Where do rubber trees get their rubber









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.