. Solar Energy News .




.
ABOUT US
Changes in the path of brain development make human brains unique
by Staff Writers
Washington DC (SPX) Dec 08, 2011

File image.

How the human brain and human cognitive abilities evolved in less than six million years has long puzzled scientists. A new study conducted by scientists in China and Germany, and published December 6 in the online, open-access journal PLoS Biology, now provides a possible explanation by showing that activity levels of genes in the human brain during development changed substantially compared to chimpanzees and macaques. What's more, these changes might be caused by a handful of key regulatory molecules called microRNAs.

The authors studied gene activity in human, chimpanzee and macaque brains across their lifetimes. Starting from newborns, they investigated two brain regions; the cerebellum, which is responsible for motor activity, and the prefrontal cortex, which has roles in more complex behavior such as social interactions or abstract thinking.

They first studied the simple gene activity differences between species that are seen at all ages. Although many genes show such simple differences, there was no disparity in numbers of these differences between the human and the chimpanzee evolutionary lineages.

Moreover, most of these differences were observed in both of the brain regions studied, and the genes involved are not thought to be specifically involved in brain function. In the opinion of Mehmet Somel, the lead author of the study, these differences represent evolutionary "white noise" and have little importance for human brain evolution.

The authors then looked for changes in gene activity during development, comparing the activity of genes in newborns and adults. In general, brain developmental patterns tend to be quite similar in humans, other primate species, and even mice.

Nevertheless, the authors found that for hundreds of genes, humans display unique developmental patterns, with profiles that were different in shape and/or timing from those found in chimpanzees and macaques.

Such human-specific developmental gene activity patterns were particularly widespread in the prefrontal cortex, where genes showing human-specific changes outnumbered genes showing chimpanzee-specific changes by four-fold. Developmental patterns in the cerebellum, by contrast, were much less human-specific.

Furthermore, many genes displaying these human-specific patterns in the prefrontal cortex were known to have specific neural functions, implying roles in human cognitive development.

Looking for possible causes of this widespread developmental remodeling in the human prefrontal cortex, the authors stumbled upon an unexpected signal.

Developmental patterns of genes that encode microRNAs (tiny but powerful regulators that target many other genes and processes) showed even greater excess of human-specific changes in the prefrontal cortex than did comparable developmental patterns in ordinary genes.

Several of these changes in microRNA activity could be directly linked to human-specific changes in activity of their target genes.

Since each microRNA may regulate the activity of hundreds of other genes, this finding provides a possible explanation to how hundreds of genes changed their activity patterns (in a coordinated way) during human brain development.

This result further implies that the evolution of human cognitive abilities might be traced back to a small number of mutations in key developmental regulators. Philipp Khaitovich, the senior author of the study, suggests that "identifying the exact genetic changes that made us think and act like humans might be easier than we previously imagined".

This said, it is likely to require much more work with a focus on the dynamics of brain development and wider use of transgenic mice, and even primate models.

Further to this, the authors point out that identification of the key human-specific DNA mutations could help us to determine how close the Neanderthals' cognitive abilities were to ours. "If Neanderthals' brain development was similar to that of chimpanzees and macaques, it would be no wonder that they became extinct when confronted by Modern Humans," says Mehmet Somel.

Somel M, Liu X, Tang L, Yan Z, Hu H, et al. (2011) MicroRNA-Driven Developmental Remodeling in the Brain Distinguishes Humans from Other Primates. PLoS Biol 9(12): e1001214. doi:10.1371/journal.pbio.1001214.

Related Links
Public Library of Science
All About Human Beings and How We Got To Be Here




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



ABOUT US
Lighting the way to understanding the brain
Boston MA (SPX) Dec 02, 2011
In a scientific first that potentially could shed new light on how signals travel in the brain, how learning alters neural pathways, and might lead to speedier drug development, scientists at Harvard have created genetically-altered neurons that light up as they fire. The work, led by John L. Loeb Associate Professor of the Natural Sciences Adam Cohen, and described in Nature Methods, invo ... read more


ABOUT US
US Navy in big biofuel purchase

E. Coli Bacteria Engineered to Eat Switchgrass and Make Transportation Fuels

OSU study questions cost-effectiveness of biofuels and their ability to cut fossil fuel use

Mast from classic racing yacht holds one of the keys to sustainable biofuels

ABOUT US
ONR Helps Undersea Robots Get the Big Picture

Insect cyborgs may become first responders, search and monitor hazardous environs

Researchers design steady-handed robot for brain surgery

neuroArm: Robotic Arms Lend a Healing Touch

ABOUT US
Mortenson Construction Completes Elk Wind Project

Enel: More new wind capacity in Iberia

AREVA Wind M5000-135 offshore turbine evolves proven M5000 platform

New Bladed link to offshore code checking tools

ABOUT US
US lawmakers press GM on electric Volt's safety

Volkswagen approval for factory in west China: report

GM China sales rise 20% to record in November

Saab's bankruptcy protection should be lifted: administrator

ABOUT US
China urges compromise in Juba, Khartoum oil row

Canada approves major oil sands expansion

Iraq pressures Exxon over deal with Kurds

Argentine blockade upsets Spain, U.K.

ABOUT US
Graphene grows better on certain copper crystals

New method of growing high-quality graphene promising for next-gen technology

Giant flakes make graphene oxide gel

Amorphous diamond, a new super-hard form of carbon created under ultrahigh pressure

ABOUT US
Carbon dioxide emissions rebound quickly after global financial crisis

Global Carbon Project annual emissions summary

Stanford scientists subject rocks to hellish conditions to combat global warming

NZ sees carbon market with Australia, possibly with EU

ABOUT US
Brazil cracks down on illegal logging in Amazon

Ecologists fume as Brazil Senate OKs forestry reform

Palm planters blamed for Borneo monkey's decline

Madagascar fishermen protect mangroves to save jobs


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement